Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 613(7945): 775-782, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442503

RESUMO

CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism1-3. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications.


Assuntos
Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Edição de Genes , Holoenzimas , Complexos Multiproteicos , RNA Guia de Sistemas CRISPR-Cas , Transposases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Edição de Genes/métodos , Transposases/química , Transposases/metabolismo , Transposases/ultraestrutura , RNA Guia de Sistemas CRISPR-Cas/genética , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Microscopia Crioeletrônica , Subunidades Ribossômicas/química , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura
2.
PLoS Pathog ; 18(2): e1010307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35130322

RESUMO

Antibiotic tolerance is an understudied potential contributor to antibiotic treatment failure and the emergence of multidrug-resistant bacteria. The molecular mechanisms governing tolerance remain poorly understood. A prominent type of ß-lactam tolerance relies on the formation of cell wall-deficient spheroplasts, which maintain structural integrity via their outer membrane (OM), an asymmetric lipid bilayer consisting of phospholipids on the inner leaflet and a lipid-linked polysaccharide (lipopolysaccharide, LPS) enriched in the outer monolayer on the cell surface. How a membrane structure like LPS, with its reliance on mere electrostatic interactions to maintain stability, is capable of countering internal turgor pressure is unknown. Here, we have uncovered a novel role for the PhoPQ two-component system in tolerance to the ß-lactam antibiotic meropenem in Enterobacterales. We found that PhoPQ is induced by meropenem treatment and promotes an increase in 4-amino-4-deoxy-L-aminoarabinose [L-Ara4N] modification of lipid A, the membrane anchor of LPS. L-Ara4N modifications likely enhance structural integrity, and consequently tolerance to meropenem, in several Enterobacterales species. Importantly, mutational inactivation of the negative PhoPQ regulator mgrB (commonly selected for during clinical therapy with the last-resort antibiotic colistin, an antimicrobial peptide [AMP]) results in dramatically enhanced tolerance, suggesting that AMPs can collaterally select for meropenem tolerance via stable overactivation of PhoPQ. Lastly, we identify histidine kinase inhibitors (including an FDA-approved drug) that inhibit PhoPQ-dependent LPS modifications and consequently potentiate meropenem to enhance lysis of tolerant cells. In summary, our results suggest that PhoPQ-mediated LPS modifications play a significant role in stabilizing the OM, promoting survival when the primary integrity maintenance structure, the cell wall, is removed.


Assuntos
Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Tolerância a Medicamentos , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/metabolismo , Lipopolissacarídeos/metabolismo , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colistina/farmacologia , Enterobacter cloacae/genética , Regulação da Expressão Gênica , Histidina Quinase/antagonistas & inibidores , Humanos , Lipídeo A/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana
3.
J Antimicrob Chemother ; 75(10): 2843-2851, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591801

RESUMO

OBJECTIVES: Metallo-ß-lactamases (MBLs) are an emerging class of antimicrobial resistance enzymes that degrade ß-lactam antibiotics, including last-resort carbapenems. Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) are increasingly prevalent, but treatment options are limited. While several serine-dependent ß-lactamase inhibitors are formulated with commonly prescribed ß-lactams, no MBL inhibitors are currently approved for combinatorial therapies. New compounds that target MBLs to restore carbapenem activity against CPE are therefore urgently needed. Herein we identified and characterized novel synthetic peptide inhibitors that bound to and inhibited NDM-1, which is an emerging ß-lactam resistance mechanism in CPE. METHODS: We leveraged Surface Localized Antimicrobial displaY (SLAY) to identify and characterize peptides that inhibit NDM-1, which is a primary carbapenem resistance mechanism in CPE. Lead inhibitor sequences were chemically synthesized and MBCs and MICs were calculated in the presence/absence of carbapenems. Kinetic analysis with recombinant NDM-1 and select peptides tested direct binding and supported NDM-1 inhibitor mechanisms of action. Inhibitors were also tested for cytotoxicity. RESULTS: We identified approximately 1700 sequences that potentiated carbapenem-dependent killing against NDM-1 Escherichia coli. Several also enhanced meropenem-dependent killing of other CPE. Biochemical characterization of a subset indicated the peptides penetrated the bacterial periplasm and directly bound NDM-1 to inhibit enzymatic activity. Additionally, each demonstrated minimal haemolysis and cytotoxicity against mammalian cell lines. CONCLUSIONS: Our approach advances a molecular platform for antimicrobial discovery, which complements the growing need for alternative antimicrobials. We also discovered lead NDM-1 inhibitors, which serve as a starting point for further chemical optimization.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , beta-Lactamases , Animais , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/metabolismo , Enterobacteriaceae/metabolismo , Cinética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
4.
mBio ; 13(3): e0100122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638738

RESUMO

ß-Lactam antibiotics exploit the essentiality of the bacterial cell envelope by perturbing the peptidoglycan layer, typically resulting in rapid lysis and death. Many Gram-negative bacteria do not lyse but instead exhibit "tolerance," the ability to sustain viability in the presence of bactericidal antibiotics for extended periods. Antibiotic tolerance has been implicated in treatment failure and is a stepping-stone in the acquisition of true resistance, and the molecular factors that promote intrinsic tolerance are not well understood. Acinetobacter baumannii is a critical-threat nosocomial pathogen notorious for its ability to rapidly develop multidrug resistance. Carbapenem ß-lactam antibiotics (i.e., meropenem) are first-line prescriptions to treat A. baumannii infections, but treatment failure is increasingly prevalent. Meropenem tolerance in Gram-negative pathogens is characterized by morphologically distinct populations of spheroplasts, but the impact of spheroplast formation is not fully understood. Here, we show that susceptible A. baumannii clinical isolates demonstrate tolerance to high-level meropenem treatment, form spheroplasts upon exposure to the antibiotic, and revert to normal growth after antibiotic removal. Using transcriptomics and genetic screens, we show that several genes associated with outer membrane integrity maintenance and efflux promote tolerance, likely by limiting entry into the periplasm. Genes associated with peptidoglycan homeostasis in the periplasm and cytoplasm also answered our screen, and their disruption compromised cell envelope barrier function. Finally, we defined the enzymatic activity of the tolerance determinants penicillin-binding protein 7 (PBP7) and ElsL (a cytoplasmic ld-carboxypeptidase). These data show that outer membrane integrity and peptidoglycan recycling are tightly linked in their contribution to A. baumannii meropenem tolerance. IMPORTANCE Carbapenem treatment failure associated with "superbug" infections has rapidly increased in prevalence, highlighting the urgent need to develop new therapeutic strategies. Antibiotic tolerance can directly lead to treatment failure but has also been shown to promote the acquisition of true resistance within a population. While some studies have addressed mechanisms that promote tolerance, factors that underlie Gram-negative bacterial survival during carbapenem treatment are not well understood. Here, we characterized the role of peptidoglycan recycling in outer membrane integrity maintenance and meropenem tolerance in A. baumannii. These studies suggest that the pathogen limits antibiotic concentrations in the periplasm and highlight physiological processes that could be targeted to improve antimicrobial treatment.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Acinetobacter baumannii/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Peptidoglicano/metabolismo
5.
J Vis Exp ; (161)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716393

RESUMO

Transposon sequencing (Tn-seq) is a powerful method that combines transposon mutagenesis and massive parallel sequencing to identify genes and pathways that contribute to bacterial fitness under a wide range of environmental conditions. Tn-seq applications are extensive and have not only enabled examination of genotype-phenotype relationships at an organism level but also at the population, community and systems levels. Gram-negative bacteria are highly associated with antimicrobial resistance phenotypes, which has increased incidents of antibiotic treatment failure. Antimicrobial resistance is defined as bacterial growth in the presence of otherwise lethal antibiotics. The "last-line" antimicrobial colistin is used to treat Gram-negative bacterial infections. However, several Gram-negative pathogens, including Acinetobacter baumannii can develop colistin resistance through a range of molecular mechanisms, some of which were characterized using Tn-seq. Furthermore, signal transduction pathways that regulate colistin resistance vary within Gram-negative bacteria. Here we propose an efficient method of transposon mutagenesis in A. baumannii that streamlines generation of a saturating transposon insertion library and amplicon library construction by eliminating the need for restriction enzymes, adapter ligation, and gel purification. The methods described herein will enable in-depth analysis of molecular determinants that contribute to A. baumannii fitness when challenged with colistin. The protocol is also applicable to other Gram-negative ESKAPE pathogens, which are primarily associated with drug resistant hospital-acquired infections.


Assuntos
Acinetobacter baumannii/genética , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutagênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA