Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 597(7875): 263-267, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34408323

RESUMO

Fructose consumption is linked to the rising incidence of obesity and cancer, which are two of the leading causes of morbidity and mortality globally1,2. Dietary fructose metabolism begins at the epithelium of the small intestine, where fructose is transported by glucose transporter type 5 (GLUT5; encoded by SLC2A5) and phosphorylated by ketohexokinase to form fructose 1-phosphate, which accumulates to high levels in the cell3,4. Although this pathway has been implicated in obesity and tumour promotion, the exact mechanism that drives these pathologies in the intestine remains unclear. Here we show that dietary fructose improves the survival of intestinal cells and increases intestinal villus length in several mouse models. The increase in villus length expands the surface area of the gut and increases nutrient absorption and adiposity in mice that are fed a high-fat diet. In hypoxic intestinal cells, fructose 1-phosphate inhibits the M2 isoform of pyruvate kinase to promote cell survival5-7. Genetic ablation of ketohexokinase or stimulation of pyruvate kinase prevents villus elongation and abolishes the nutrient absorption and tumour growth that are induced by feeding mice with high-fructose corn syrup. The ability of fructose to promote cell survival through an allosteric metabolite thus provides additional insights into the excess adiposity generated by a Western diet, and a compelling explanation for the promotion of tumour growth by high-fructose corn syrup.


Assuntos
Frutose/farmacologia , Xarope de Milho Rico em Frutose/farmacologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Nutrientes/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática , Feminino , Frutoquinases/metabolismo , Frutose/metabolismo , Xarope de Milho Rico em Frutose/metabolismo , Hipóxia/dietoterapia , Hipóxia/patologia , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Piruvato Quinase/metabolismo
2.
EMBO J ; 39(5): e102169, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31930530

RESUMO

Genetically engineered mouse models (GEMMs) of cancer have proven to be of great value for basic and translational research. Although CRISPR-based gene disruption offers a fast-track approach for perturbing gene function and circumvents certain limitations of standard GEMM development, it does not provide a flexible platform for recapitulating clinically relevant missense mutations in vivo. To this end, we generated knock-in mice with Cre-conditional expression of a cytidine base editor and tested their utility for precise somatic engineering of missense mutations in key cancer drivers. Upon intraductal delivery of sgRNA-encoding vectors, we could install point mutations with high efficiency in one or multiple endogenous genes in situ and assess the effect of defined allelic variants on mammary tumorigenesis. While the system also produces bystander insertions and deletions that can stochastically be selected for when targeting a tumor suppressor gene, we could effectively recapitulate oncogenic nonsense mutations. We successfully applied this system in a model of triple-negative breast cancer, providing the proof of concept for extending this flexible somatic base editing platform to other tissues and tumor types.


Assuntos
Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Edição de Genes , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Mutação
3.
Methods ; 164-165: 100-108, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30836137

RESUMO

Base editing is a powerful technology that enables programmable conversion of single nucleotides in the mammalian genome. Base editors consist of a partially active Cas9 nuclease (Cas9D10A) tethered to a natural or synthetic DNA modifying enzyme. Though only recently described, BE has already shown enormous potential for basic and translational research, allowing the creation or repair of disease alleles in a variety of cell types and model organisms. In the past 2 years, a vast array of new and modified base editor variants have been described, expanding the flexibility and usefulness of the approach. Though simple in concept, effective implementation of base editing requires an understanding of the advantages and limitations of each of these tools. Here, we provide an overview of the concepts of DNA base editing, and discuss the recent progress toward the development of optimized base editing systems for mammalian cells. In addition, we highlight key technical aspects of designing and executing BE experiments, and provide detailed experimental examples of successful base editing in cell lines and organoids to help guide the effective use of these tools for genome modification.


Assuntos
Sequência de Bases/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Animais , Técnicas de Cultura de Células/métodos , Linhagem Celular , DNA/genética , RNA Guia de Cinetoplastídeos/genética
4.
Cell Rep Methods ; 2(7): 100239, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35880017

RESUMO

We present Multi-miR, a microRNA-embedded shRNA system modeled after endogenous microRNA clusters that enables simultaneous expression of up to three or four short hairpin RNAs (shRNAs) from a single promoter without loss of activity, enabling robust combinatorial RNA interference (RNAi). We further developed complementary all-in-one vectors that are over one log-scale more sensitive to doxycycline-mediated activation in vitro than previous methods and resistant to shRNA inactivation in vivo. We demonstrate the utility of this system for intracranial expression of shRNAs in a glioblastoma model. Additionally, we leverage this platform to target the redundant RAF signaling node in a mouse model of KRAS-mutant cancer and show that robust combinatorial synthetic lethality efficiently abolishes tumor growth.


Assuntos
MicroRNAs , Camundongos , Animais , MicroRNAs/genética , Interferência de RNA , Vetores Genéticos , RNA Interferente Pequeno/genética , Regiões Promotoras Genéticas
5.
Cancer Discov ; 10(11): 1654-1671, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32792368

RESUMO

KRAS is the most frequently mutated oncogene in cancer, yet there is little understanding of how specific KRAS amino acid changes affect tumor initiation, progression, or therapy response. Using high-fidelity CRISPR-based engineering, we created an allelic series of new LSL-Kras mutant mice, reflecting codon 12 and 13 mutations that are highly prevalent in lung (KRASG12C), pancreas (KRASG12R), and colon (KRASG13D) cancers. Induction of each allele in either the murine colon or pancreas revealed striking quantitative and qualitative differences between KRAS mutants in driving the early stages of transformation. Furthermore, using pancreatic organoid models, we show that KRASG13D mutants are sensitive to EGFR inhibition, whereas KRASG12C-mutant organoids are selectively responsive to covalent G12C inhibitors only when EGFR is suppressed. Together, these new mouse strains provide an ideal platform for investigating KRAS biology in vivo and for developing preclinical precision oncology models of KRAS-mutant pancreas, colon, and lung cancers. SIGNIFICANCE: KRAS is the most frequently mutated oncogene. Here, we describe new preclinical models that mimic tissue-selective KRAS mutations and show that each mutation has distinct cellular consequences in vivo and carries differential sensitivity to targeted therapeutic agents.See related commentary by Kostyrko and Sweet-Cordero, p. 1626.This article is highlighted in the In This Issue feature, p. 1611.


Assuntos
Alelos , Oncogenes/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Humanos , Fenótipo
6.
Cancer Discov ; 10(11): 1690-1705, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32703769

RESUMO

Colorectal cancer is driven by mutations that activate canonical WNT/ß-catenin signaling, but inhibiting WNT has significant on-target toxicity, and there are no approved therapies targeting dominant oncogenic drivers. We recently found that activating a ß-catenin-independent branch of WNT signaling that inhibits GSK3-dependent protein degradation induces asparaginase sensitivity in drug-resistant leukemias. To test predictions from our model, we turned to colorectal cancer because these cancers can have WNT-activating mutations that function either upstream (i.e., R-spondin fusions) or downstream (APC or ß-catenin mutations) of GSK3, thus allowing WNT/ß-catenin and WNT-induced asparaginase sensitivity to be unlinked genetically. We found that asparaginase had little efficacy in APC or ß-catenin-mutant colorectal cancer, but was profoundly toxic in the setting of R-spondin fusions. Pharmacologic GSK3α inhibition was sufficient for asparaginase sensitization in APC or ß-catenin-mutant colorectal cancer, but not in normal intestinal progenitors. Our findings demonstrate that WNT-induced therapeutic vulnerabilities can be exploited for colorectal cancer therapy. SIGNIFICANCE: Solid tumors are thought to be asparaginase-resistant via de novo asparagine synthesis. In leukemia, GSK3α-dependent protein degradation, a catabolic amino acid source, mediates asparaginase resistance. We found that asparaginase is profoundly toxic to colorectal cancers with WNT-activating mutations that inhibit GSK3. Aberrant WNT activation can provide a therapeutic vulnerability in colorectal cancer.See related commentary by Davidsen and Sullivan, p. 1632.This article is highlighted in the In This Issue feature, p. 1611.


Assuntos
Asparaginase/metabolismo , Neoplasias Colorretais/genética , Via de Sinalização Wnt/genética , Linhagem Celular Tumoral , Humanos
7.
Cell Rep ; 30(10): 3280-3295.e6, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160537

RESUMO

Genome editing technologies have transformed our ability to engineer desired genomic changes within living systems. However, detecting precise genomic modifications often requires sophisticated, expensive, and time-consuming experimental approaches. Here, we describe DTECT (Dinucleotide signaTurE CapTure), a rapid and versatile detection method that relies on the capture of targeted dinucleotide signatures resulting from the digestion of genomic DNA amplicons by the type IIS restriction enzyme AcuI. DTECT enables the accurate quantification of marker-free precision genome editing events introduced by CRISPR-dependent homology-directed repair, base editing, or prime editing in various biological systems, such as mammalian cell lines, organoids, and tissues. Furthermore, DTECT allows the identification of oncogenic mutations in cancer mouse models, patient-derived xenografts, and human cancer patient samples. The ease, speed, and cost efficiency by which DTECT identifies genomic signatures should facilitate the generation of marker-free cellular and animal models of human disease and expedite the detection of human pathogenic variants.


Assuntos
Edição de Genes , Variação Genética , Genômica , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Sequência de Bases , DNA/genética , Modelos Animais de Doenças , Loci Gênicos , Marcadores Genéticos , Genótipo , Células HEK293 , Humanos , Camundongos , Mutação/genética , Células NIH 3T3 , Neoplasias/genética , Nucleotídeos/genética , Oncogenes , Reparo de DNA por Recombinação/genética , Mapeamento por Restrição
8.
Nat Biomed Eng ; 4(1): 125-130, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740768

RESUMO

In contrast to traditional CRISPR-Cas9 homology-directed repair, base editing can correct point mutations without supplying a DNA-repair template. Here we show in a mouse model of tyrosinaemia that hydrodynamic tail-vein injection of plasmid DNA encoding the adenine base editor (ABE) and a single-guide RNA (sgRNA) can correct an A>G splice-site mutation. ABE treatment partially restored splicing, generated fumarylacetoacetate hydrolase (FAH)-positive hepatocytes in the liver, and rescued weight loss in mice. We also generated FAH+ hepatocytes in the liver via lipid-nanoparticle-mediated delivery of a chemically modified sgRNA and an mRNA of a codon-optimized base editor that displayed higher base-editing efficiency than the standard ABEs. Our findings suggest that adenine base editing can be used for the correction of genetic diseases in adult animals.


Assuntos
Adenina/metabolismo , Edição de Genes/métodos , Tirosinemias/genética , Animais , Modelos Animais de Doenças , Feminino , Células HEK293 , Hepatócitos/metabolismo , Humanos , Hidrolases/genética , Fígado/metabolismo , Mutação Puntual , RNA/administração & dosagem
9.
Cancer Discov ; 9(10): 1358-1371, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337618

RESUMO

The majority of colorectal cancers show hyperactivated WNT signaling due to inactivating mutations in the adenomatous polyposis coli (APC) tumor suppressor. Genetically restoring APC suppresses WNT and induces rapid and sustained tumor regression, implying that reengaging this endogenous tumor-suppressive mechanism may be an effective therapeutic strategy. Here, using new animal models, human cell lines, and ex vivo organoid cultures, we show that tankyrase (TNKS) inhibition can control WNT hyperactivation and provide long-term tumor control in vivo, but that effective responses are critically dependent on how APC is disrupted. Mutant APC proteins truncated within the mutation cluster region physically engage the destruction complex and suppress the WNT transcriptional program, while APC variants with early truncations (e.g., Apc Min) show limited interaction with AXIN1 and ß-catenin, and do not respond to TNKS blockade. Together, this work shows that TNKS inhibition, like APC restoration, can reestablish endogenous control of WNT/ß-catenin signaling, but that APC genotype is a crucial determinant of this response. SIGNIFICANCE: This study reveals how subtle changes to the mutations in a critical colorectal tumor suppressor, APC, influence the cellular response to a targeted therapy. It underscores how investigating the specific genetic alterations that occur in human cancer can identify important biological mechanisms of drug response and resistance.This article is highlighted in the In This Issue feature, p. 1325.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tanquirases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Marcação de Genes , Humanos , Camundongos , Terapia de Alvo Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Interferência de RNA , Tanquirases/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 14(12): e0226645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31891587

RESUMO

Tankyrase (TNKS) 1/2 are positive regulators of WNT signaling by controlling the activity of the ß-catenin destruction complex. TNKS inhibitors provide an opportunity to suppress hyperactive WNT signaling in tumors, however, they have shown limited anti-proliferative activity as a monotherapy in human cancer cell lines. Here we perform a kinome-focused CRISPR screen to identify potential effective drug combinations with TNKS inhibition. We show that the loss of CDK4, but not CDK6, synergizes with TNKS1/2 blockade to drive G1 cell cycle arrest and senescence. Through precise modelling of cancer-associated mutations using cytidine base editors, we show that this therapeutic approach is absolutely dependent on suppression of canonical WNT signaling by TNKS inhibitors and is effective in cells from multiple epithelial cancer types. Together, our results suggest that combined WNT and CDK4 inhibition might provide a potential therapeutic strategy for difficult-to-treat epithelial tumors.


Assuntos
Neoplasias Colorretais/enzimologia , Quinase 4 Dependente de Ciclina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Tanquirases/antagonistas & inibidores , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Senescência Celular , Neoplasias Colorretais/terapia , Quinase 6 Dependente de Ciclina/genética , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos
11.
Nat Biotechnol ; 36(9): 888-893, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29969439

RESUMO

CRISPR base editing enables the creation of targeted single-base conversions without generating double-stranded breaks. However, the efficiency of current base editors is very low in many cell types. We reengineered the sequences of BE3, BE4Gam, and xBE3 by codon optimization and incorporation of additional nuclear-localization sequences. Our collection of optimized constitutive and inducible base-editing vector systems dramatically improves the efficiency by which single-nucleotide variants can be created. The reengineered base editors enable target modification in a wide range of mouse and human cell lines, and intestinal organoids. We also show that the optimized base editors mediate efficient in vivo somatic editing in the liver in adult mice.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Linhagem Celular , Variação Genética , Humanos , Camundongos
12.
Curr Colorectal Cancer Rep ; 13(2): 101-110, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28413363

RESUMO

The WNT signaling pathway is a critical mediator of tissue homeostasis and repair, and frequently co-opted during tumor development. Almost all colorectal cancers (CRC) demonstrate hyperactivation of the WNT pathway, which in many cases is believed to be the initiating and driving event. In this short review, we provide a focused overview of recent developments in our understanding of the WNT pathway in CRC, describe new research tools that are enabling a deeper understanding of WNT biology, and outline ongoing efforts to target this pathway therapeutically.

13.
Nat Commun ; 8: 15945, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28695896

RESUMO

Defining the genetic drivers of cancer progression is a key in understanding disease biology and developing effective targeted therapies. Chromosome rearrangements are a common feature of human malignancies, but whether they represent bona fide cancer drivers and therapeutically actionable targets, requires functional testing. Here, we describe the generation of transgenic, inducible CRISPR-based mouse systems to engineer and study recurrent colon cancer-associated EIF3E-RSPO2 and PTPRK-RSPO3 chromosome rearrangements in vivo. We show that both Rspo2 and Rspo3 fusion events are sufficient to initiate hyperplasia and tumour development in vivo, without additional cooperating genetic events. Rspo-fusion tumours are entirely Wnt-dependent, as treatment with an inhibitor of Wnt secretion, LGK974, drives rapid tumour clearance from the intestinal mucosa without effects on normal intestinal crypts. Altogether, our study provides direct evidence that endogenous Rspo2 and Rspo3 chromosome rearrangements can initiate and maintain tumour development, and indicate a viable therapeutic window for LGK974 treatment of RSPO-fusion cancers.


Assuntos
Aberrações Cromossômicas , Cromossomos/genética , Neoplasias do Colo/genética , Rearranjo Gênico , Trombospondinas/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Intestinos/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pirazinas/administração & dosagem , Piridinas/administração & dosagem , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Trombospondinas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
14.
Nat Biotechnol ; 35(6): 577-582, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459450

RESUMO

Colorectal cancer (CRC) is a leading cause of death in the developed world, yet facile preclinical models that mimic the natural stages of CRC progression are lacking. Through the orthotopic engraftment of colon organoids we describe a broadly usable immunocompetent CRC model that recapitulates the entire adenoma-adenocarcinoma-metastasis axis in vivo. The engraftment procedure takes less than 5 minutes, shows efficient tumor engraftment in two-thirds of mice, and can be achieved using organoids derived from genetically engineered mouse models (GEMMs), wild-type organoids engineered ex vivo, or from patient-derived human CRC organoids. In this model, we describe the genotype and time-dependent progression of CRCs from adenocarcinoma (6 weeks), to local disseminated disease (11-12 weeks), and spontaneous metastasis (>20 weeks). Further, we use the system to show that loss of dysregulated Wnt signaling is critical for the progression of disseminated CRCs. Thus, our approach provides a fast and flexible means to produce tailored CRC mouse models for genetic studies and pre-clinical investigation.


Assuntos
Neoplasias Colorretais/genética , Modelos Animais de Doenças , Edição de Genes/métodos , Genes Neoplásicos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Transplante de Órgãos/métodos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA