Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Appl Microbiol Biotechnol ; 105(1): 401-415, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33219393

RESUMO

The yeast strain Moniliella spathulata SBUG-Y 2180 was isolated from oil-contaminated soil at the Tengiz oil field in the Atyrau region of Kazakhstan on the basis of its unique ability to use crude oil and its components as the sole carbon and energy source. This yeast used a large number of hydrocarbons as substrates (more than 150), including n-alkanes with chain lengths ranging from C10 to C32, monomethyl- and monoethyl-substituted alkanes (C9-C23), and n-alkylcyclo alkanes with alkyl chain lengths from 3 to 24 carbon atoms as well as substituted monoaromatic and diaromatic hydrocarbons. Metabolism of this huge range of hydrocarbon substrates produced a very large number of aliphatic, alicyclic, and aromatic acids. Fifty-one of these were identified by GC/MS analyses. This is the first report of the degradation and formation of such a large number of compounds by a yeast. Inoculation of barley seeds with M. spathulata SBUG-Y 2180 had a positive effect on shoot and root development of plants grown in oil-contaminated sand, pointing toward potential applications of the yeast in bioremediation of polluted soils. KEY POINTS: • Moniliella spathulata an oil-degrading yeast • Increase of the growth of barley.


Assuntos
Hordeum , Petróleo , Poluentes do Solo , Basidiomycota , Biodegradação Ambiental , Hidrocarbonetos , Saccharomyces cerevisiae , Solo
2.
Appl Microbiol Biotechnol ; 104(8): 3569-3583, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125477

RESUMO

Comparative analyses determined the relationship between the structure of bisphenol A (BPA) as well as of seven bisphenol analogues (bisphenol B (BPB), bisphenol C (BPC), bisphenol E (BPE), bisphenol F (BPF), bisphenol Z (BPZ), bisphenol AP (BPAP), bisphenol PH (BPPH)) and their biotransformability by the biphenyl-degrading bacterium Cupriavidus basilensis SBUG 290. All bisphenols were substrates for bacterial transformation with conversion rates ranging from 6 to 98% within 216 h and 36 different metabolites were characterized. Transformation by biphenyl-grown cells comprised four different pathways: (a) formation of ortho-hydroxylated bisphenols, hydroxylating either one or both phenols of the compounds; (b) ring fission; (c) transamination followed by acetylation or dimerization; and (d) oxidation of ring substituents, such as methyl groups and aromatic ring systems, present on the 3-position. However, the microbial attack of bisphenols by C. basilensis was limited to the phenol rings and its substituents, while substituents on the carbon bridge connecting the rings were not oxidized. All bisphenol analogues with modifications at the carbon bridge could be oxidized up to ring cleavage, while substituents at the 3-position of the phenol ring other than hydroxyl groups did not allow this reaction. Replacing one methyl group at the carbon bridge of BPA by a hydrophobic aromatic or alicyclic ring system inhibited both dimerization and transamination followed by acetylation. While most of the bisphenol analogues exhibited estrogenic activity, four biotransformation products tested were not estrogenically active.


Assuntos
Compostos Benzidrílicos/metabolismo , Biotransformação , Cupriavidus/metabolismo , Compostos Benzidrílicos/classificação , Cicloexanos/metabolismo , Fenóis/metabolismo , Microbiologia do Solo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
3.
Appl Microbiol Biotechnol ; 103(10): 4137-4151, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30941461

RESUMO

The cycloalkanes, comprising up to 45% of the hydrocarbon fraction, occur in crude oil or refined oil products (e.g., gasoline) mainly as alkylated cyclohexane derivatives and have been increasingly found in environmental samples of soil and water. Furthermore, short-chain alkylated cycloalkanes are components of the so-called volatile organic compounds (VOCs). This study highlights the biotransformation of methyl- and ethylcyclohexane by the alkane-assimilating yeast Candida maltosa and the phenol- and benzoate-utilizing yeast Trichosporon mucoides under laboratory conditions. In the course of this biotransformation, we detected 25 different metabolites, which were analyzed by HPLC and GC-MS. The biotransformation process of methylcyclohexane in both yeasts involve (A) ring hydroxylation at different positions (C2, C3, and C4) and subsequent oxidation to ketones as well as (B) oxidation of the alkyl side chain to hydroxylated and acid products. The yeast T. mucoides additionally performs ring hydroxylation at the C1-position and (C) oxidative decarboxylation and (D) aromatization of cyclohexanecarboxylic acid. Both yeasts also oxidized the saturated ring system and the side chain of ethylcyclohexane. However, the cyclohexylacetic acid, which was formed, seemed not to be substrate for aromatization. This is the first report of several new transformation reactions of alkylated cycloalkanes for eukaryotic microorganisms.


Assuntos
Candida/metabolismo , Cicloexanos/metabolismo , Redes e Vias Metabólicas , Trichosporon/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Poluentes Ambientais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas
4.
Appl Microbiol Biotechnol ; 103(17): 7261-7274, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31346684

RESUMO

Bacteria and fungi were isolated from eight different soil samples from different regions in Kazakhstan contaminated with oil or salt or aromatic compounds. For the isolation of the organisms, we used, on the one hand, typical hydrocarbons such as the well utilizable aliphatic alkane tetradecane, the hardly degradable multiple-branched alkane pristane, and the biaromatic compound biphenyl as enrichment substrates. On the other hand, we also used oxygenated derivatives of alicyclic and monoaromatic hydrocarbons, such as cyclohexanone and p-tert-amylphenol, which are known as problematic pollutants. Seventy-nine bacterial and fungal strains were isolated, and 32 of them that were clearly able to metabolize some of these substrates, as tested by HPLC-UV/Vis and GC-MS analyses, were characterized taxonomically by DNA sequencing. Sixty-two percent of the 32 isolated strains from 14 different genera belong to well-described hydrocarbon degraders like some Rhodococci as well as Acinetobacter, Pseudomonas, Fusarium, Candida, and Yarrowia species. However, species of the bacterial genus Curtobacterium, the yeast genera Lodderomyces and Pseudozyma, as well as the filamentous fungal genera Purpureocillium and Sarocladium, which have rarely been described as hydrocarbon degrading, were isolated and shown to be efficient tetradecane degraders, mostly via monoterminal oxidation. Pristane was exclusively degraded by Rhodococcus isolates. Candida parapsilosis, Fusarium oxysporum, Fusarium solani, and Rhodotorula mucilaginosa degraded cyclohexanone, and in doing so accumulate ε-caprolactone or hexanedioic acid as metabolites. Biphenyl was transformed by Pseudomonas/Stenotrophomonas isolates. When p-tert-amylphenol was used as growth substrate, none of the isolated strains were able to use it.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Hidrocarbonetos/metabolismo , Petróleo/microbiologia , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação
5.
Appl Microbiol Biotechnol ; 102(1): 345-354, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29082419

RESUMO

The strain Phlebia tremellosa SBUG 1630 isolated from a thatched roof in Northern Germany is capable of colonizing and degrading effectively the water reed Phragmites communis. Within 96 h after inoculation, mycelia covered both the outer and the inner surface of reed shoot fragments as observed by scanning electron microscopy. Interestingly, top culm sections and culm edges were particularly susceptible towards fungal degradation. The weight loss of culms reached 20-73% depending on the environmental conditions applied during the incubation of 70 days. Reed degradation was stable at pH 4 to pH 8 and optimal between 25 and 30 °C. Short-term incubation at elevated temperatures (37 to 55 °C) affected the fungal reed degradation to only a minor extent, whereas > 18 h at 55 °C completely inhibited fungal growth and reed degradation. Supplementation with 43 mM NH4Cl enhanced the reed degradation up to 9%. In contrast, the addition of diammonium tartrate increased the weight loss of the samples considerably up to 16% at 344 mM. Furthermore, reed degradation by P. tremellosa was increased by supplementing the test medium with Mn (99 to 1584 µM), Cu (150 to 300 µM), and less significantly phosphate (4 mM), Zn (37 to 74 µM), and Ag (76 µM) after 70 days. In addition, activities of the ligninolytic enzymes laccase (max. 27.4 nmol ml-1 min-1) and lignin peroxidase (max. 22.8 nmol ml-1 min-1) were rather low in nitrogen-limited medium, whereas considerably higher levels of manganese peroxidase (max. 635.9 nmol ml-1 min-1) were observed.


Assuntos
Poaceae/microbiologia , Polyporales/fisiologia , Cloreto de Amônio/farmacologia , Biodegradação Ambiental , Alemanha , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Peroxidases/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Poaceae/ultraestrutura , Polyporales/ultraestrutura , Temperatura , Água
6.
Appl Microbiol Biotechnol ; 101(9): 3743-3758, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28050635

RESUMO

The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.


Assuntos
Compostos Benzidrílicos/metabolismo , Cupriavidus/metabolismo , Estrogênios não Esteroides/metabolismo , Fenóis/metabolismo , Biotransformação , Carbono/metabolismo , Cupriavidus/crescimento & desenvolvimento , Redes e Vias Metabólicas
7.
FEMS Yeast Res ; 16(3)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26912215

RESUMO

In this study, alcohol dehydrogenase 1 from Arxula adeninivorans (Aadh1p) was identified and characterized. Aadh1p showed activity with short and medium chain length primary alcohols in the forward reaction and their aldehydes in the reverse reaction. Aadh1p has 64% identity with Saccharomyces cerevisiae Adh1p, is localized in the cytoplasm and uses NAD(+) as cofactor. Gene expression analysis showed a low level increase in AADH1 gene expression with ethanol, pyruvate or xylose as the carbon source. Deletion of the AADH1 gene affects growth of the cells with 1-butanol, ethanol and glucose as the carbon source, and a strain which overexpressed the AADH1 gene metabolized 1-butanol more rapidly. An ADH activity assay indicated that Aadh1p is a major enzyme for the synthesis of ethanol and the degradation of 1-butanol in A. adeninivorans.


Assuntos
1-Butanol/metabolismo , Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Saccharomycetales/enzimologia , Álcool Desidrogenase/genética , Sequência de Aminoácidos , Carbono/metabolismo , Coenzimas/metabolismo , Citoplasma/química , Perfilação da Expressão Gênica , Dados de Sequência Molecular , NAD/metabolismo , Ácido Pirúvico/metabolismo , Saccharomycetales/genética , Homologia de Sequência de Aminoácidos , Xilose/metabolismo
8.
Microb Cell Fact ; 15(1): 175, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733155

RESUMO

BACKGROUND: The non-conventional yeast Arxula adeninivorans uses 1-butanol as a carbon source and has recently attracted attention as a promising organism for 1-butanol production. Alcohol dehydrogenases (adhp) are important catalysts in 1-butanol metabolism, but only Aadh1p from Arxula has been characterized. This enzyme is involved in ethanol synthesis but has a low impact on 1-butanol degradation. RESULTS: In this study, we identified and characterized a second adhp from A. adeninivorans (Aadh2p). Compared to Saccharomyces cerevisiae ADHs' (ScAdh) protein sequences it originates from the same ancestral node as ScAdh6p, 7p and 4p. It is also localized in the cytoplasm and uses NAD(H) as cofactor. The enzyme has its highest activity with medium chain-length alcohols and maximum activity with 1-butanol with the catalytic efficiency of the purified enzyme being 42 and 43,000 times higher than with ethanol and acetaldehyde, respectively. Arxula adeninivorans strain G1212/YRC102-AADH2, which expresses the AADH2 gene under the control of the strong constitutive TEF1 promoter was constructed. It achieved an ADH activity of up to 8000 U/L and 500 U/g dry cell weight (dcw) which is in contrast to the control strain G1212/YRC102 which had an ADH activity of up to 1400 U/L and 200 U/g dcw. Gene expression analysis showed that AADH2 derepression or induction using non-fermentable carbon-sources such as ethanol, pyruvate, glycerol or 1-butanol did occur. Compared to G1212/YRC102 AADH2 knock-out strain had a slower growth rate and lower 1-butanol consumption if 1-butanol was used as sole carbon source and AADH2-transformants did not grow at all in the same conditions. However, addition of the branched-chain amino acids leucine, isoleucine and valine allowed the transformants to use 1-butanol as carbon source. The addition of these amino acids to the control strain and Δaadh2 mutant cultures had the effect of accelerating 1-butanol consumption. CONCLUSIONS: Our results confirm that Aadh2p plays a major role in A. adeninivorans 1-butanol metabolism. It is upregulated by up to 60-fold when the cells grow on 1-butanol, whereas only minor changes were found in the relative expression level for Aadh1p. Thus the constitutive overexpression of the AADH2 gene could be useful in the production of 1-butanol by A. adeninivorans, although it is likely that other ADHs will have to be knocked-out to prevent 1-butanol oxidation.


Assuntos
1-Butanol/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Redes e Vias Metabólicas/genética , Leveduras/enzimologia , Álcool Desidrogenase/isolamento & purificação , Carbono/metabolismo , Etanol/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , NAD/metabolismo , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo
10.
J Basic Microbiol ; 56(11): 1252-1273, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27624187

RESUMO

Heavy contamination of soils by crude oil is omnipresent in areas of oil recovery and exploitation. Bioremediation by indigenous plants in cooperation with hydrocarbon degrading microorganisms is an economically and ecologically feasible means to reclaim contaminated soils. To study the effects of indigenous soil bacteria capable of utilizing oil hydrocarbons on biomass production of plants growing in oil-contaminated soils eight bacterial strains were isolated from contaminated soils in Kazakhstan and characterized for their abilities to degrade oil components. Four of them, identified as species of Gordonia and Rhodococcus turned out to be effective degraders. They produced a variety of organic acids from oil components, of which 59 were identified and 7 of them are hitherto unknown acidic oil metabolites. One of them, Rhodococcus erythropolis SBUG 2054, utilized more than 140 oil components. Inoculating barley seeds together with different combinations of these bacterial strains restored normal growth of the plants on contaminated soils, demonstrating the power of this approach for bioremediation. Furthermore, we suggest that the plant promoting effect of these bacteria is not only due to the elimination of toxic oil hydrocarbons but possibly also to the accumulation of a variety of organic acids which modulate the barley's rhizosphere environment.


Assuntos
Hordeum/crescimento & desenvolvimento , Poluição por Petróleo , Petróleo/metabolismo , Microbiologia do Solo , Biodegradação Ambiental , Biomassa , Poluentes Ambientais , Bactéria Gordonia/isolamento & purificação , Bactéria Gordonia/metabolismo , Hidrocarbonetos/metabolismo , Cazaquistão , Petróleo/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Rhodococcus/isolamento & purificação , Rhodococcus/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Poluentes do Solo/química
11.
Appl Environ Microbiol ; 81(16): 5497-510, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048925

RESUMO

The genes ACUT1, ACUT2, and ACUT3, encoding cutinases, were selected from the genomic DNA of Arxula adeninivorans LS3. The alignment of the amino acid sequences of these cutinases with those of other cutinases or cutinase-like enzymes from different fungi showed that they all had a catalytic S-D-H triad with a conserved G-Y-S-Q-G domain. All three genes were overexpressed in A. adeninivorans using the strong constitutive TEF1 promoter. Recombinant 6× His (6h)-tagged cutinase 1 protein (p) from A. adeninivorans LS3 (Acut1-6hp), Acut2-6hp, and Acut3-6hp were produced and purified by immobilized-metal ion affinity chromatography and biochemically characterized using p-nitrophenyl butyrate as the substrate for standard activity tests. All three enzymes from A. adeninivorans were active from pH 4.5 to 6.5 and from 20 to 30°C. They were shown to be unstable under optimal reaction conditions but could be stabilized using organic solvents, such as polyethylene glycol 200 (PEG 200), isopropanol, ethanol, or acetone. PEG 200 (50%, vol/vol) was found to be the best stabilizing agent for all of the cutinases, and acetone greatly increased the half-life and enzyme activity (up to 300% for Acut3-6hp). The substrate spectra for Acut1-6hp, Acut2-6hp, and Acut3-6hp were quite similar, with the highest activity being for short-chain fatty acid esters of p-nitrophenol and glycerol. Additionally, they were found to have polycaprolactone degradation activity and cutinolytic activity against cutin from apple peel. The activity was compared with that of the 6× His-tagged cutinase from Fusarium solani f. sp. pisi (FsCut-6hp), also expressed in A. adeninivorans, as a positive control. A fed-batch cultivation of the best Acut2-6hp-producing strain, A. adeninivorans G1212/YRC102-ACUT2-6H, was performed and showed that very high activities of 1,064 U ml(-1) could be achieved even with a nonoptimized cultivation procedure.


Assuntos
Hidrolases de Éster Carboxílico/isolamento & purificação , Hidrolases de Éster Carboxílico/metabolismo , Saccharomycetales/enzimologia , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Cromatografia de Afinidade , Estabilidade Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos da radiação , Expressão Gênica , Concentração de Íons de Hidrogênio , Resíduos Industriais , Malus/microbiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Solventes , Especificidade por Substrato , Temperatura
12.
Appl Microbiol Biotechnol ; 99(9): 4071-84, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25592733

RESUMO

Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand.


Assuntos
Ácidos Carboxílicos/metabolismo , Bactéria Gordonia/metabolismo , Petróleo/metabolismo , Rizosfera , Rhodococcus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Carbono/metabolismo , Metabolismo Energético , Poluição Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Bactéria Gordonia/classificação , Bactéria Gordonia/isolamento & purificação , Cazaquistão , Raízes de Plantas/microbiologia , Rhodococcus/classificação , Rhodococcus/isolamento & purificação
13.
Appl Microbiol Biotechnol ; 98(4): 1609-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23715853

RESUMO

Laccases are able to mediate both cleavage and synthesis processes. The basis for this dual reaction capability lies in the property of the enzyme laccase to oxidize phenolic, and to some extent non-phenolic substances, to reactive radicals which can undergo on the one hand separations of small substitutents or large molecule parts from the parent compound and on the other hand coupling reactions with other radicals or molecules which are not themselves oxidizable by laccase. The cleavage of the non-phenolic compound 4-morpholinoaniline as well as the deamination of 4-aminophenol and the dechlorination of 4-chlorophenol resulted in the formation of 1,4-hydroquinone which is immediately oxidized by laccase to 1,4-benzoquinone. The formation of the 1,4-hydroquinone/1,4-benzoquinone is the rate limiting step for the synthesis of the heteromolecular dimers and trimers composed of 1,4-benzoquinone and one or two molecules of morpholine. In addition to the synthesis of new compounds from the cleavage products, 4-morpholinoaniline polymerized probably via azo groups and C-N bonds to a homomolecular dimer and trimer. Similarities and differences in cleavage and synthesis reactions catalyzed by the low redox potential laccase of Myceliophthora thermophila (0.46 V) and the high redox potential laccase of Pycnoporus cinnabarinus (0.79 V) were determined. In addition, the dependency of the cleavage and synthesis efficiencies on the (a) structure and redox potential of the laccase, (b) structure and redox potential of the substrate, (c) pH value of the buffer used, (d) incubation temperature, (e) solvent concentration, and (f) laccase activity is discussed in general.


Assuntos
Lacase/metabolismo , Benzoquinonas/metabolismo , Hidroquinonas/metabolismo , Fenóis/metabolismo
14.
Appl Microbiol Biotechnol ; 98(1): 373-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24158734

RESUMO

The compound p-tert-amylphenol (p-(1,1-dimethylpropyl)phenol) is a widely used disinfectant belonging to the group of short branched-chain alkylphenols. It is produced in or imported into the USA with more than one million pounds per year and can be found in the environment in surface water, sediments, and soil. We have investigated for the first time the biotransformation of this disinfectant and the accumulation of metabolites by five bacterial strains, three yeast strains, and three filamentous fungi, selected because of their ability to transform either aromatic or branched-chain compounds. Of the 11 microorganisms tested, one yeast strain and three bacteria could not transform the disinfectant despite of a very low concentration applied (0.005%). None of the other seven organisms was able to degrade the short branched alkyl chain of p-tert-amylphenol. However, two yeast strains, two filamentous fungi, and two bacterial strains attacked the aromatic ring system of the disinfectant via the hydroxylated intermediate 4-(1,1-dimethyl-propyl)-benzene-1,2-diol resulting in two hitherto unknown ring fission products with pyran and furan structures, 4-(1,1-dimethyl-propyl)-6-oxo-6-H-pyran-2-carboxylic acid and 2-[3-(1,1-dimethyl-propyl)-5-oxo-2H-furan-2-yl]acetic acid. While the disinfectant was toxic to the organisms applied, one of the ring cleavage products was not. Thus, a detoxification of the disinfectant was achieved by ring cleavage. Furthermore, one filamentous fungus formed sugar conjugates with p-tert-amylphenol as another mechanism of detoxification of toxic environmental pollutants. With this work, we can also contribute to the allocation of unknown chemical compounds within environmental samples to their parent compounds.


Assuntos
Bactérias/metabolismo , Desinfetantes/metabolismo , Fungos/metabolismo , Fenóis/metabolismo , Biotransformação , Inativação Metabólica
15.
Appl Microbiol Biotechnol ; 97(3): 1289-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22828982

RESUMO

Thymol has antibacterial, antifungal, insecticidal, and antioxidative properties which are the basis for the wide use of this compound in the cosmetic, food, and pharmaceutical industries. Although thymol is a ubiquitously occurring substance in the environment, data about its degradation and detoxification by bacteria are sparse. Here, we show the existence of two different pathways for the biotransformation of thymol by Nocardia cyriacigeorgica and Mycobacterium neoaurum which were described for the first time for gram-positive bacteria. The first pathway starts with hydroxylation of thymol to thymohydroquinone (2-isopropyl-5-methylbenzene-1,4-diol) with subsequent oxidation to thymobenzoquinone (2-isopropyl-5-methyl-1,4-benzoquinone). The second pathway involves hydroxylation of the methyl group followed by oxidation to 3-hydroxy-4-isopropylbenzoic acid, possibly via the aldehyde 3-hydroxy-4-isopropylbenzaldehyde. It is noteworthy that the branched side chain of thymol was not oxidized. Similarities and differences of these oxidation processes with those of the gram-negative bacterium Pseudomonas putida, fungi, and plants are discussed and, in addition, the toxicity of thymol towards N. cyriacigeorgica and M. neoaurum was tested. The experiments showed a temporary growth inhibition with 0.025 % thymol. This was explained by degradation of thymol and the formation of products which are less toxic than thymol itself.


Assuntos
Redes e Vias Metabólicas , Mycobacterium/metabolismo , Nocardia/metabolismo , Timol/metabolismo , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Biotransformação , Mycobacterium/efeitos dos fármacos , Mycobacterium/crescimento & desenvolvimento , Nocardia/efeitos dos fármacos , Nocardia/crescimento & desenvolvimento , Oxirredução , Plantas , Pseudomonas putida , Timol/toxicidade
16.
Appl Microbiol Biotechnol ; 97(18): 8329-39, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23912120

RESUMO

The environmental pollutant 4-sec-butylphenol (4-sec-BP) which possesses estrogenic properties was transformed by the aerobic Gram-positive bacteria Mycobacterium neoaurum and Nocardia cyriacigeorgica into three main products (P1-P3) which were isolated and structurally characterized in detail. Two of them were products of a process resembling anaerobic metabolism of alkylphenols based on modifications of the alkyl side chain of 4-sec-BP. The first product (P1) was identified as 4-(2-hydroxy-1-methylpropyl)-phenol. The second product P2 was isolated as a mixture of at least four structures which could be identified as I 4-sec-butylidenecyclohexa-2,5-dienone; II 4-(1-methylenepropyl)-phenol; III 4-(1-methylpropenyl)-phenol; and IV 4-(1-methylallyl)-phenol. In contrast to P1 and P2, the third product (P3) resulted from a modification of the hydroxyl group of 4-sec-BP. This product was only formed by M. neoaurum and was identified as the glucoside conjugate 4-sec-butylphenol-α-D-glucopyranoside. Since in general, fungi synthesize sugar conjugates to detoxify hazardous pollutants, the formation of this conjugate is a peculiarity of M. neoaurum. Thus, altogether, six products were formed from 4-sec-BP and different transformation pathways are introduced. The hydroxylating and glucosylating capacity of the characterized bacteria open up applications in environmental protection.


Assuntos
Mycobacterium/metabolismo , Nocardia/metabolismo , Fenóis/química , Fenóis/metabolismo , Biodegradação Ambiental , Biotransformação , Estrutura Molecular , Mycobacterium/genética , Mycobacterium/isolamento & purificação , Nocardia/genética , Nocardia/isolamento & purificação , Microbiologia do Solo
17.
Appl Microbiol Biotechnol ; 97(11): 5043-53, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23400446

RESUMO

The phenol-degrading yeast Trichosporon mucoides can oxidize and detoxify biarylic environmental pollutants such as dibenzofuran, diphenyl ether and biphenyl by ring cleavage. The degradation pathways are well investigated, but the enzymes involved are not. The high similarity of hydroxylated biphenyl derivatives and phenol raised the question if the enzymes of the phenol degradation are involved in ring cleavage or whether specific enzymes are necessary. Purification of enzymes from T. mucoides with catechol cleavage activity demonstrated the existence of three different enzymes: a classical catechol-1,2-dioxygenase (CDO), not able to cleave the aromatic ring system of 3,4-dihydroxybiphenyl, and two novel enzymes with a high affinity towards 3,4-dihydroxybiphenyl. The comparison of the biochemical characteristics and mass spectrometric sequence data of these three enzymes demonstrated that they have different substrate specificities. CDO catalyzes the ortho-cleavage of dihydroxylated monoaromatic compounds, while the two novel enzymes carry out a similar reaction on biphenyl derivatives. The ring fission of 3,4-dihydroxybiphenyl by the purified enzymes results in the formation of (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)acetic acid. These results suggest that the ring cleavage enzymes catalyzing phenol degradation are not involved in the ring cleavage of biarylic compounds by this yeast, although some intermediates of the phenol metabolism may function as inducers.


Assuntos
Poluentes Ambientais/metabolismo , Hidrocarbonetos Cíclicos/metabolismo , Trichosporon/metabolismo , Biotransformação , Enzimas/química , Enzimas/isolamento & purificação , Enzimas/metabolismo , Espectrometria de Massas , Oxirredução , Especificidade por Substrato , Trichosporon/enzimologia
18.
J Mater Sci Mater Med ; 24(3): 667-78, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274628

RESUMO

Biodegradability and adhesive-associated local drug release are important aspects of research in tissue adhesive development. Therefore, this study focuses on investigating the in vitro degradation and drug release of a tissue adhesive consisting of hexamethylene diisocyanate functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan chloride. To prevent infections, ciprofloxacin hydrochloride (CPX·HCl) was incorporated into the adhesive. The influence of CPX·HCl on the adhesive reaction and adhesive strength was analyzed by FTIR-ATR-spectroscopy and tensile tests. The CPX·HCl release was investigated by HPLC. The degradation-induced changes at 37 °C were evaluated by gravimetric/morphological analyzes and micro-computer tomography. The antibiotic potential of the CPX·HCl loaded adhesive was determined by agar diffusion tests. The degradation tests revealed a mass loss of about 78 % after 52 weeks. The adhesive reaction velocity and tensile strength were not influenced by CPX·HCl. Using a 2 mg/g CPX·HCl loaded adhesive an inhibition of all tested bacteria was observed.


Assuntos
Quitosana/química , Etilenoglicol/química , Ácido Láctico/química , Adesivos Teciduais , Cromatografia Líquida de Alta Pressão , Técnicas In Vitro , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
19.
J Basic Microbiol ; 53(6): 509-17, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22961388

RESUMO

Expression of phenol oxidases (PO) in bacteria is often observed during physiological and morphological changes; in the nitrogen-fixing strain Azotobacter chroococcum SBUG 1484, it is accompanied by the formation of encysted cells and melanin. Herein, we studied the effects of copper and the depletion of the nitrogenase-relevant metals molybdenum and iron on physiological characteristics such as culture pigmentation, release of ortho-dihydroxylated melanin precursors, and expression of PO activity in A. chroococcum. Biomass production and melanogenic appearance were directly affected by the depletion of either iron or molybdenum, or in the absence of both metals. Only nitrogen-fixing cells growing in the presence of both metals and cultures supplemented with iron (molybdenum starved) showed the ability to produce an intensively brown-black melanin pigment typically associated with A. chroococcum. Accordingly, PO production was only detected in the presence of both metals and in iron-supplemented cultures starved of molybdenum. The total amount of catecholate siderophores produced by nitrogen-fixing melanogenic cells was considerably higher than in cultures starved of metal ions. Induction of enhanced PO activity was stimulated by additional copper sulfate, possibly related to cellular processes involved in the detoxification of this particular metal, and revealed distinct release of the ortho-dihydroxylated melanin precursors catechol and 3,4-dihydroxybenzoic acid.


Assuntos
Azotobacter/metabolismo , Metais/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Nitrogênio/metabolismo , Catecóis/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Melaninas/metabolismo , Molibdênio/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogenase/metabolismo , Sideróforos/metabolismo
20.
Appl Microbiol Biotechnol ; 93(1): 343-55, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21701983

RESUMO

Phenylalkanes are ubiquitously found in nature as pollutants originating from oil, gas oil and petrol. Rising commercial demand for mineral oil fractions has led to the increased prevalence of environmental contamination, whereby these particular hydrocarbons are encountered by bacteria which have subsequently developed sophisticated metabolic routes for purposes of degradation. Herein a detailed analysis of these metabolic pathways in the degradation of phenylalkanes by Mycobacterium neoaurum and Rhodococcus erythropolis highlighted preponderance for the formation of certain metabolites of which 17 were identified and whereby striking differences were noticed depending specifically upon the length of the substrate's alkyl chain. Although the degradation of even-numbered phenylalkane substrates was assumed to result in the generation of phenylacetic acid formed due to substrate terminal oxidation and subsequent ß-oxidation, cultures of M. neoaurum and R. erythropolis were determined in an extracellular accumulation of odd-numbered acidic metabolites, suggesting a simultaneous presence of sub-terminal degradation mechanisms. However, results obtained from biotransformation assays containing even-chained phenylalkanoic acid intermediates as substrates revealed exclusive ß-oxidative mechanisms and no generation of odd-numbered degradation products. R. erythropolis in contrast to M. neoaurum also proved viable for hydroxylation of the aromatic ring of metabolites. Interestingly, the generation of phenylacetic acid and subsequently 2-hydroxyphenyl acetic acid was monitored and entailed the presence of the lactone intermediate 2-coumaranone. These results enhance our understanding of the degradation of phenylalkanes and illustrate the potential application of such species in the bioremediation of these common environmental pollutants and in the strains' diverse abilities to transform mineral oil compounds to new valuable products.


Assuntos
Alcanos/metabolismo , Poluentes Ambientais/metabolismo , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/metabolismo , Fenóis/metabolismo , Rhodococcus/crescimento & desenvolvimento , Rhodococcus/metabolismo , Benzofuranos/metabolismo , Biotransformação , Redes e Vias Metabólicas , Óleo Mineral/metabolismo , Fenilacetatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA