Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(6): 694-704, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28369050

RESUMO

The transcription factor STAT5 has a critical role in B cell acute lymphoblastic leukemia (B-ALL). How STAT5 mediates this effect is unclear. Here we found that activation of STAT5 worked together with defects in signaling components of the precursor to the B cell antigen receptor (pre-BCR), including defects in BLNK, BTK, PKCß, NF-κB1 and IKAROS, to initiate B-ALL. STAT5 antagonized the transcription factors NF-κB and IKAROS by opposing regulation of shared target genes. Super-enhancers showed enrichment for STAT5 binding and were associated with an opposing network of transcription factors, including PAX5, EBF1, PU.1, IRF4 and IKAROS. Patients with a high ratio of active STAT5 to NF-κB or IKAROS had more-aggressive disease. Our studies indicate that an imbalance of two opposing transcriptional programs drives B-ALL and suggest that restoring the balance of these pathways might inhibit B-ALL.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos B , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição Ikaros/genética , Receptores de Células Precursoras de Linfócitos B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição STAT5/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Imunoprecipitação da Cromatina , Citometria de Fluxo , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Reação em Cadeia da Polimerase Multiplex , Subunidade p50 de NF-kappa B/genética , Fator de Transcrição PAX5/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Prognóstico , Proteína Quinase C beta/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Taxa de Sobrevida , Transativadores/genética
2.
J Mol Cell Cardiol ; 179: 30-41, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062247

RESUMO

Rodent cardiomyocytes undergo mitotic arrest in the first postnatal week. Here, we investigate the role of transcriptional co-regulator Btg2 (B-cell translocation gene 2) and functionally-similar homolog Btg1 in postnatal cardiomyocyte cell cycling and maturation. Btg1 and Btg2 (Btg1/2) are expressed in neonatal C57BL/6 mouse left ventricles coincident with cardiomyocyte cell cycle arrest. Btg1/2 constitutive double knockout (DKO) mouse hearts exhibit increased pHH3+ mitotic cardiomyocytes compared to Wildtype at postnatal day (P)7, but not at P30. Similarly, neonatal AAV9-mediated Btg1/2 double knockdown (DKD) mouse hearts exhibit increased EdU+ mitotic cardiomyocytes compared to Scramble AAV9-shRNA controls at P7, but not at P14. In neonatal rat ventricular myocyte (NRVM) cultures, siRNA-mediated Btg1/2 single and double knockdown cohorts showed increased EdU+ cardiomyocytes compared to Scramble siRNA controls, without increase in binucleation or nuclear DNA content. RNAseq analyses of Btg1/2-depleted NRVMs support a role for Btg1/2 in inhibiting cell proliferation, and in modulating reactive oxygen species response pathways, implicated in neonatal cardiomyocyte cell cycle arrest. Together, these data identify Btg1 and Btg2 as novel contributing factors in mammalian cardiomyocyte cell cycle arrest after birth.


Assuntos
Proteínas Imediatamente Precoces , Proteínas Supressoras de Tumor , Animais , Camundongos , Ratos , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Mamíferos/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Mod Pathol ; 36(5): 100119, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36805792

RESUMO

Approximately one-third of patients with diffuse large B-cell lymphoma (DLBCL) relapse and often require salvage chemotherapy followed by autologous stem cell transplantation. In most cases, the clonal relationship between the first diagnosis and subsequent relapse is not assessed, thereby potentially missing the identification of second primary lymphoma. In this study, the clonal relationship of 59 paired DLBCL diagnoses and recurrences was established by next-generation sequencing-based detection of immunoglobulin gene rearrangements. Among 50 patients with interpretable results, 43 patients (86%) developed clonally related relapsed disease. This was observed in 100% of early recurrences (<2 years), 80% of the recurrences with an interval between 2 and 5 years, and 73% of late recurrences (≥5 years). On the other hand, 7 (14%) out of 50 patients displayed different dominant clonotypes in primary DLBCL and clinical recurrences, confirming the occurrence of second primary DLBCL; 37% of DLBCL recurrences that occurred ≥4 years after diagnosis were shown to be second primary lymphomas. The clonally unrelated cases were Epstein-Barr virus positive in 43% of the cases, whereas this was only 5% in the relapsed DLBCL cases. In conclusion, next-generation sequencing-based clonality testing in late recurrences should be considered in routine diagnostics to distinguish relapse from second primary lymphoma, as this latter group of patients with DLBCL may benefit from less-intensive treatment strategies.


Assuntos
Infecções por Vírus Epstein-Barr , Transplante de Células-Tronco Hematopoéticas , Linfoma Difuso de Grandes Células B , Humanos , Infecções por Vírus Epstein-Barr/patologia , Recidiva Local de Neoplasia/patologia , Herpesvirus Humano 4 , Transplante Autólogo , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico
4.
Histopathology ; 82(7): 1013-1020, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36779226

RESUMO

AIMS: Large B cell lymphoma with IRF4 rearrangement (LBCL-IRF4) is a new entity in the 2017 revised World Health Organisation (WHO) classification that was initially mainly reported in children. After identification of a 79-year-old patient, we assessed how often IRF4 rearrangements can be detected in adult diffuse large B cell lymphomas (DLBCLs) which have to be reclassified to LBCL-IRF4 based on fluorescence in-situ hybridisation (FISH) for IRF4. METHODS AND RESULTS: With FISH, we studied the presence of IRF4 rearrangements in 238 lymphomas that were diagnosed as DLBCL according to the previous WHO classification of 2008. CONCLUSIONS: In addition to the index patient, an IRF4 rearrangement was detected in another five of 237 patients (2%). The immunohistochemical profile of these five IRF4 rearranged lymphomas was consistent with previous reports of LBCL-IRF4. One case was recognised to represent transformation of follicular lymphoma rather than de-novo LBCL-IRF4. BCL6 rearrangements were found in two cases of LBCL-IRF4; BCL2 and MYC rearrangements were excluded. Patients presented with limited stage disease with involvement of the head and neck in three patients, and involvement of the lung and thyroid in two others. This study shows that, although rare, LBCL-IRF4 should also be considered in older patients and at localisations other than the head and neck region.


Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Rearranjo Gênico , Linfoma Folicular/patologia , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética
5.
Mod Pathol ; 35(6): 757-766, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34862451

RESUMO

Clonality analysis in classic Hodgkin lymphoma (cHL) is of added value for correctly diagnosing patients with atypical presentation or histology reminiscent of T cell lymphoma, and for establishing the clonal relationship in patients with recurrent disease. However, such analysis has been hampered by the sparsity of malignant Hodgkin and Reed-Sternberg (HRS) cells in a background of reactive immune cells. Recently, the EuroClonality-NGS Working Group developed a novel next-generation sequencing (NGS)-based assay and bioinformatics platform (ARResT/Interrogate) to detect immunoglobulin (IG) gene rearrangements for clonality testing in B-cell lymphoproliferations. Here, we demonstrate the improved performance of IG-NGS compared to conventional BIOMED-2/EuroClonality analysis to detect clonal gene rearrangements in 16 well-characterized primary cHL cases within the IG heavy chain (IGH) and kappa light chain (IGK) loci. This was most obvious in formalin-fixed paraffin-embedded (FFPE) tissue specimens, where three times more clonal cases were detected with IG-NGS (9 cases) compared to BIOMED-2 (3 cases). In total, almost four times more clonal rearrangements were detected in FFPE with IG-NGS (N = 23) as compared to BIOMED-2/EuroClonality (N = 6) as judged on identical IGH and IGK targets. The same clonal rearrangements were also identified in paired fresh frozen cHL samples. To validate the neoplastic origin of the detected clonotypes, IG-NGS clonality analysis was performed on isolated HRS cells, demonstrating identical clonotypes as detected in cHL whole-tissue specimens. Interestingly, IG-NGS and HRS single-cell analysis after DEPArray™ digital sorting revealed rearrangement patterns and copy number variation profiles indicating clonal diversity and intratumoral heterogeneity in cHL. Our data demonstrate improved performance of NGS-based detection of IG gene rearrangements in cHL whole-tissue specimens, providing a sensitive molecular diagnostic assay for clonality assessment in Hodgkin lymphoma.


Assuntos
Genes de Imunoglobulinas , Doença de Hodgkin , Variações do Número de Cópias de DNA , Rearranjo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Doença de Hodgkin/diagnóstico , Doença de Hodgkin/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/genética
6.
Clin Chem ; 67(6): 867-875, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33709101

RESUMO

BACKGROUND: Due to improved treatment, more patients with multiple myeloma (MM) reach a state of minimal residual disease (MRD). Different strategies for MM MRD monitoring include flow cytometry, allele-specific oligonucleotide-quantitative PCR, next-generation sequencing, and mass spectrometry (MS). The last 3 methods rely on the presence and the stability of a unique immunoglobulin fingerprint derived from the clonal plasma cell population. For MS-MRD monitoring it is imperative that MS-compatible clonotypic M-protein peptides are identified. To support implementation of molecular MRD techniques, we studied the presence and stability of these clonotypic features in the CoMMpass database. METHODS: An analysis pipeline based on MiXCR and HIGH-VQUEST was constructed to identify clonal molecular fingerprints and their clonotypic peptides based on transcriptomic datasets. To determine the stability of the clonal fingerprints, we compared the clonal fingerprints during disease progression for each patient. RESULTS: The analysis pipeline to establish the clonal fingerprint and MS-suitable clonotypic peptides was successfully validated in MM cell lines. In a cohort of 609 patients with MM, we demonstrated that the most abundant clone harbored a unique clonal molecular fingerprint and that multiple unique clonotypic peptides compatible with MS measurements could be identified for all patients. Furthermore, the clonal immunoglobulin gene fingerprints of both the light and heavy chain remained stable during MM disease progression. CONCLUSIONS: Our data support the use of the clonal immunoglobulin gene fingerprints in patients with MM as a suitable MRD target for MS-MRD analyses.


Assuntos
Genes de Imunoglobulinas/fisiologia , Mieloma Múltiplo , Peptídeos/química , Biomarcadores , Progressão da Doença , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Neoplasia Residual/genética , Peptídeos/genética
7.
Blood ; 134(12): 946-950, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31366619

RESUMO

Tetraspanin CD37 is predominantly expressed on the cell surface of mature B lymphocytes and is currently being studied as novel therapeutic target for B-cell lymphoma. Recently, we demonstrated that loss of CD37 induces spontaneous B-cell lymphoma in Cd37-knockout mice and correlates with inferior survival in patients with diffuse large B-cell lymphoma (DLBCL). Here, CD37 mutation analysis was performed in a cohort of 137 primary DLBCL samples, including 44 primary immune-privileged site-associated DLBCL (IP-DLBCL) samples originating in the testis or central nervous system. CD37 mutations were exclusively identified in IP-DLBCL cases (10/44, 23%) but absent in non-IP-DLBCL cases. The aberrations included 10 missense mutations, 1 deletion, and 3 splice-site CD37 mutations. Modeling and functional analysis of CD37 missense mutations revealed loss of function by impaired CD37 protein expression at the plasma membrane of human lymphoma B cells. This study provides novel insight into the molecular pathogenesis of IP-DLBCL and indicates that anti-CD37 therapies will be more beneficial for DLBCL patients without CD37 mutations.


Assuntos
Antígenos de Neoplasias/genética , Privilégio Imunológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Tetraspaninas/genética , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/imunologia , Neoplasias do Sistema Nervoso Central/patologia , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Frequência do Gene , Inativação Gênica , Humanos , Privilégio Imunológico/genética , Linfoma Difuso de Grandes Células B/epidemiologia , Linfoma Difuso de Grandes Células B/patologia , Masculino , Mutação , Neoplasias Testiculares/genética , Neoplasias Testiculares/imunologia , Neoplasias Testiculares/patologia , Testículo/imunologia , Testículo/patologia , Tetraspaninas/química , Tetraspaninas/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia
8.
J Cell Physiol ; 234(5): 5379-5389, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30350856

RESUMO

Since the identification of B-cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B-cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.


Assuntos
Proliferação de Células , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais , Transcrição Gênica , Proteínas Supressoras de Tumor/genética
9.
Haematologica ; 103(4): 565-574, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29519871

RESUMO

Transcription factor IKZF1 (IKAROS) acts as a critical regulator of lymphoid differentiation and is frequently deleted or mutated in B-cell precursor acute lymphoblastic leukemia. IKZF1 gene defects are associated with inferior treatment outcome in both childhood and adult B-cell precursor acute lymphoblastic leukemia and occur in more than 70% of BCR-ABL1-positive and BCR-ABL1-like cases of acute lymphoblastic leukemia. Over the past few years, much has been learned about the tumor suppressive function of IKZF1 during leukemia development and the molecular pathways that relate to its impact on treatment outcome. In this review, we provide a concise overview on the role of IKZF1 during normal lymphopoiesis and the pathways that contribute to leukemia pathogenesis as a consequence of altered IKZF1 function. Furthermore, we discuss different mechanisms by which IKZF1 alterations impose therapy resistance on leukemic cells, including enhanced cell adhesion and modulation of glucocorticoid response.


Assuntos
Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/fisiologia , Adulto , Adesão Celular/genética , Criança , Resistência a Medicamentos/genética , Deleção de Genes , Humanos , Mutação
10.
Ann Diagn Pathol ; 35: 38-41, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29705714

RESUMO

Desmoid-type fibromatosis, also called desmoid tumor, is a locally aggressive myofibroblastic neoplasm that usually arises in deep soft tissue with significant potential for local recurrence. It displays an unpredictable clinical course. ß-Catenin, the genetic key player of desmoid tumors shows nuclear accumulation due to mutations that prevent its degradation leading to activation of Wnt signaling and myofibroblastic cell proliferation. The corresponding hot spot mutations are located in exon 3 of the CTNNB1 gene or alternatively, in the APC tumor suppressor gene, most often as a germline mutation. Multifocal desmoid tumors are very rare and clinical characteristics are poorly understood. Here we present six sporadic and one familial case of multifocal desmoid tumors. Four female and three male patients, aged between 7 and 30 years (mean 18.4 years) were identified in a cohort of 1392 cases. Tumors were located in (distal) extremities, thorax, breast, abdominal wall, shoulder, and neck. Four cases showed a CTNNB1 mutation and one an APC germline mutation. In two sporadic cases no CTNNB1 mutation was identified. Four patients showed (multiple) recurrences and one patient was lost to follow-up. In conclusion, multifocal desmoid tumors are a very rare disease and may occur in sporadic cases that are characterized by recurrent CTNNB1 mutations. However, the underlying pathogenesis of multifocal desmoid tumors remains poorly understood with often aggressive clinical behavior and challenging therapeutical management.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Fibromatose Agressiva/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias de Tecidos Moles/patologia , beta Catenina/genética , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Feminino , Fibromatose Agressiva/diagnóstico por imagem , Fibromatose Agressiva/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/genética , Neoplasias de Tecidos Moles/diagnóstico por imagem , Neoplasias de Tecidos Moles/genética , Adulto Jovem
12.
Haematologica ; 102(3): 541-551, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27979924

RESUMO

Deletions and mutations affecting lymphoid transcription factor IKZF1 (IKAROS) are associated with an increased relapse risk and poor outcome in B-cell precursor acute lymphoblastic leukemia. However, additional genetic events may either enhance or negate the effects of IKZF1 deletions on prognosis. In a large discovery cohort of 533 childhood B-cell precursor acute lymphoblastic leukemia patients, we observed that single-copy losses of BTG1 were significantly enriched in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia (P=0.007). While BTG1 deletions alone had no impact on prognosis, the combined presence of BTG1 and IKZF1 deletions was associated with a significantly lower 5-year event-free survival (P=0.0003) and a higher 5-year cumulative incidence of relapse (P=0.005), when compared with IKZF1-deleted cases without BTG1 aberrations. In contrast, other copy number losses commonly observed in B-cell precursor acute lymphoblastic leukemia, such as CDKN2A/B, PAX5, EBF1 or RB1, did not affect the outcome of IKZF1-deleted acute lymphoblastic leukemia patients. To establish whether the combined loss of IKZF1 and BTG1 function cooperate in leukemogenesis, Btg1-deficient mice were crossed onto an Ikzf1 heterozygous background. We observed that loss of Btg1 increased the tumor incidence of Ikzf1+/- mice in a dose-dependent manner. Moreover, murine B cells deficient for Btg1 and Ikzf1+/- displayed increased resistance to glucocorticoids, but not to other chemotherapeutic drugs. Together, our results identify BTG1 as a tumor suppressor in leukemia that, when deleted, strongly enhances the risk of relapse in IKZF1-deleted B-cell precursor acute lymphoblastic leukemia, and augments the glucocorticoid resistance phenotype mediated by the loss of IKZF1 function.


Assuntos
Transformação Celular Neoplásica/genética , Epistasia Genética , Fator de Transcrição Ikaros/genética , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Biomarcadores Tumorais , Transformação Celular Neoplásica/metabolismo , Criança , Pré-Escolar , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Deleção de Genes , Predisposição Genética para Doença , Humanos , Fator de Transcrição Ikaros/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Avaliação de Resultados da Assistência ao Paciente , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Prognóstico , Recidiva , Proteínas Supressoras de Tumor/metabolismo
13.
Dev Biol ; 408(1): 109-25, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26524254

RESUMO

Cerebellar granule neurons develop postnatally from cerebellar granule precursors (GCPs), which are located in the external granule layer (EGL) where they massively proliferate. Thereafter, GCPs become postmitotic, migrate inward to form the internal granule layer (IGL), further differentiate and form synapses with Purkinje cell dendrites. We previously showed that the Btg family gene, Tis21/Btg2, is required for normal GCP migration. Here we investigated the role in cerebellar development of the related gene, Btg1, which regulates stem cell quiescence in adult neurogenic niches, and is expressed in the cerebellum. Knockout of Btg1 in mice caused a major increase of the proliferation of the GCPs in the EGL, whose thickness increased, remaining hyperplastic even after postnatal day 14, when the EGL is normally reduced to a few GCP layers. This was accompanied by a slight decrease of differentiation and migration of the GCPs and increase of apoptosis. The GCPs of double Btg1/Tis21-null mice presented combined major defects of proliferation and migration outside the EGL, indicating that each gene plays unique and crucial roles in cerebellar development. Remarkably, these developmental defects lead to a permanent increase of the adult cerebellar volume in Btg1-null and double mutant mice, and to impairment in all mutants, including Tis21-null, of the cerebellum-dependent motor coordination. Gain- and loss-of-function strategies in a GCP cell line revealed that Btg1 regulates the proliferation of GCPs selectively through cyclin D1. Thus, Btg1 plays a critical role for cerebellar maturation and function.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiopatologia , Ciclina D1/metabolismo , Atividade Motora , Proteínas de Neoplasias/genética , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Contagem de Células , Diferenciação Celular , Movimento Celular , Proliferação de Células , Cerebelo/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular , Deleção de Genes , Humanos , Proteínas Imediatamente Precoces/metabolismo , Meduloblastoma/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo
14.
PLoS Genet ; 9(1): e1003225, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382691

RESUMO

Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative measurements of N-glycosylation using ultra-performance liquid chromatography (UPLC) in 2,247 individuals from four European discovery populations. In parallel, we measured IgG N-glycans using MALDI-TOF mass spectrometry (MS) in a replication cohort of 1,848 Europeans. Meta-analysis of genome-wide association study (GWAS) results identified 9 genome-wide significant loci (P<2.27 × 10(-9)) in the discovery analysis and two of the same loci (B4GALT1 and MGAT3) in the replication cohort. Four loci contained genes encoding glycosyltransferases (ST6GAL1, B4GALT1, FUT8, and MGAT3), while the remaining 5 contained genes that have not been previously implicated in protein glycosylation (IKZF1, IL6ST-ANKRD55, ABCF2-SMARCD3, SUV420H1, and SMARCB1-DERL3). However, most of them have been strongly associated with autoimmune and inflammatory conditions (e.g., systemic lupus erythematosus, rheumatoid arthritis, ulcerative colitis, Crohn's disease, diabetes type 1, multiple sclerosis, Graves' disease, celiac disease, nodular sclerosis) and/or haematological cancers (acute lymphoblastic leukaemia, Hodgkin lymphoma, and multiple myeloma). Follow-up functional experiments in haplodeficient Ikzf1 knock-out mice showed the same general pattern of changes in IgG glycosylation as identified in the meta-analysis. As IKZF1 was associated with multiple IgG N-glycan traits, we explored biomarker potential of affected N-glycans in 101 cases with SLE and 183 matched controls and demonstrated substantial discriminative power in a ROC-curve analysis (area under the curve = 0.842). Our study shows that it is possible to identify new loci that control glycosylation of a single plasma protein using GWAS. The results may also provide an explanation for the reported pleiotropy and antagonistic effects of loci involved in autoimmune diseases and haematological cancer.


Assuntos
Doenças Autoimunes , Pleiotropia Genética , Glicosiltransferases/genética , Neoplasias Hematológicas , Imunoglobulina G , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glicosilação , Glicosiltransferases/sangue , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/genética , Camundongos , Camundongos Knockout , Esclerose Múltipla/genética
15.
PLoS Genet ; 8(2): e1002533, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359517

RESUMO

Recurrent submicroscopic deletions in genes affecting key cellular pathways are a hallmark of pediatric acute lymphoblastic leukemia (ALL). To gain more insight into the mechanism underlying these deletions, we have studied the occurrence and nature of abnormalities in one of these genes, the B-cell translocation gene 1 (BTG1), in a large cohort of pediatric ALL cases. BTG1 was found to be exclusively affected by genomic deletions, which were detected in 65 out of 722 B-cell precursor ALL (BCP-ALL) patient samples (9%), but not in 109 T-ALL cases. Eight different deletion sizes were identified, which all clustered at the telomeric site in a hotspot region within the second (and last) exon of the BTG1 gene, resulting in the expression of truncated BTG1 read-through transcripts. The presence of V(D)J recombination signal sequences at both sites of virtually all deletions strongly suggests illegitimate RAG1/RAG2-mediated recombination as the responsible mechanism. Moreover, high levels of histone H3 lysine 4 trimethylation (H3K4me3), which is known to tether the RAG enzyme complex to DNA, were found within the BTG1 gene body in BCP-ALL cells, but not T-ALL cells. BTG1 deletions were rarely found in hyperdiploid BCP-ALLs, but were predominant in other cytogenetic subgroups, including the ETV6-RUNX1 and BCR-ABL1 positive BCP-ALL subgroups. Through sensitive PCR-based screening, we identified multiple additional BTG1 deletions at the subclonal level in BCP-ALL, with equal cytogenetic distribution which, in some cases, grew out into the major clone at relapse. Taken together, our results indicate that BTG1 deletions may act as "drivers" of leukemogenesis in specific BCP-ALL subgroups, in which they can arise independently in multiple subclones at sites that are prone to aberrant RAG1/RAG2-mediated recombination events. These findings provide further evidence for a complex and multiclonal evolution of ALL.


Assuntos
Evolução Clonal , Deleção de Genes , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Doença Aguda , Criança , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia
16.
Br J Haematol ; 166(2): 250-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24673583

RESUMO

Early recognition of children with chronic phase chronic myeloid leukaemia (CML-CP) at risk for developing a lymphoid blast crisis (LyBC) is desirable, because therapy options in CML-LyBC are limited. We used Multiplex Ligation-dependent Probe Amplification to determine whether B-cell lymphoid leukaemia-specific copy number alterations (CNAs) (e.g. IKZF1, PAX5, CDKN2A deletions) could be detected in CML-CP and may be used to predict disease progression to LyBC. CNAs were detected in all patients with CML-LyBC, but in none of the 77 patients with CML-CP. Based on this study we conclude that CNAs remain a hallmark of disease progression.


Assuntos
Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA/genética , DNA de Neoplasias/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Crise Blástica/genética , Criança , Progressão da Doença , Diagnóstico Precoce , Humanos , Fator de Transcrição Ikaros/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Multiplex/métodos , Proteínas de Neoplasias/genética , Mutação Puntual , Prognóstico
17.
Hemasphere ; 7(11): e976, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928625

RESUMO

Patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) occasionally develop diffuse large B-cell lymphoma (DLBCL). This mostly results from LPL/WM transformation, although clonally unrelated DLBCL can also arise. LPL/WM is characterized by activating MYD88L265P (>95%) and CXCR4 mutations (~30%), but the genetic drivers of transformation remain to be identified. Here, in thirteen LPL/WM patients who developed DLBCL, the clonal relationship of LPL and DLBCL together with mutations contributing to transformation were investigated. In 2 LPL/WM patients (15%), high-throughput sequencing of immunoglobulin gene rearrangements showed evidence of >1 clonal B-cell population in LPL tissue biopsies. In the majority of LPL/WM patients, DLBCL presentations were clonally related to the dominant clone in LPL, providing evidence of transformation. However, in 3 patients (23%), DLBCL was clonally unrelated to the major malignant B-cell clone in LPL, of which 2 patients developed de novo DLBCL. In this study cohort, LPL displayed MYD88L265P mutation in 8 out of eleven patients analyzed (73%), while CXCR4 mutations were observed in 6 cases (55%). MYD88WT LPL biopsies present in 3 patients (27%) were characterized by CD79B and TNFAIP3 mutations. Upon transformation, DLBCL acquired novel mutations targeting BTG1, BTG2, CD79B, CARD11, TP53, and PIM1. Together, we demonstrate variable clonal B-cell dynamics in LPL/WM patients developing DLBCL, and the occurrence of clonally unrelated DLBCL in about one-quarter of LPL/WM patients. Moreover, we identified commonly mutated genes upon DLBCL transformation, which together with preserved mutations already present in LPL characterize the mutational landscape of DLBCL occurrences in LPL/WM patients.

18.
Blood Adv ; 7(19): 5911-5924, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37552109

RESUMO

Despite high cure rates in classic Hodgkin lymphoma (cHL), relapses are observed. Whether relapsed cHL represents second primary lymphoma or an underlying T-cell lymphoma (TCL) mimicking cHL is underinvestigated. To analyze the nature of cHL recurrences, in-depth clonality testing of immunoglobulin (Ig) and T-cell receptor (TCR) rearrangements was performed in paired cHL diagnoses and recurrences among 60 patients, supported by targeted mutation analysis of lymphoma-associated genes. Clonal Ig rearrangements were detected by next-generation sequencing (NGS) in 69 of 120 (58%) diagnoses and recurrence samples. The clonal relationship could be established in 34 cases, identifying clonally related relapsed cHL in 24 of 34 patients (71%). Clonally unrelated cHL was observed in 10 of 34 patients (29%) as determined by IG-NGS clonality assessment and confirmed by the identification of predominantly mutually exclusive gene mutations in the paired cHL samples. In recurrences of >2 years, ∼60% of patients with cHL for whom the clonal relationship could be established showed a second primary cHL. Clonal TCR gene rearrangements were identified in 14 of 125 samples (11%), and TCL-associated gene mutations were detected in 7 of 14 samples. Retrospective pathology review with integration of the molecular findings were consistent with an underlying TCL in 5 patients aged >50 years. This study shows that cHL recurrences, especially after 2 years, sometimes represent a new primary cHL or TCL mimicking cHL, as uncovered by NGS-based Ig/TCR clonality testing and gene mutation analysis. Given the significant therapeutic consequences, molecular testing of a presumed relapse in cHL is crucial for subsequent appropriate treatment strategies adapted to the specific lymphoma presentation.


Assuntos
Doença de Hodgkin , Linfoma de Células T , Linfoma , Humanos , Doença de Hodgkin/diagnóstico , Doença de Hodgkin/genética , Doença de Hodgkin/patologia , Estudos Retrospectivos , Recidiva Local de Neoplasia , Imunoglobulinas
19.
Blood ; 115(23): 4810-9, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20354172

RESUMO

Resistance to glucocorticoids (GCs) is a major clinical problem in the treatment of acute lymphoblastic leukemia (ALL), but the underlying mechanisms are not well understood. Although mutations in the glucocorticoid receptor (GR) gene can give rise to therapy resistance in vitro, acquired somatic mutations in the GR are rarely encountered in patients. Here we report that the protein encoded by the BTG1 gene, which is frequently deleted in (pediatric) ALL, is a key determinant of GC responsiveness. Using RNA interference, we show that loss of BTG1 expression causes GC resistance both by decimating GR expression and by controlling GR-mediated transcription. Conversely, reexpression of BTG1 restores GC sensitivity by potentiating GC-induced GR expression, a phenomenon known as GR autoinduction. In addition, the arginine methyltransferase PRMT1, a BTG1-binding partner and transcriptional coactivator, is recruited to the GR gene promoter in a BTG1-dependent manner. These results implicate the BTG1/PRMT1 complex in GR-mediated gene expression and reveal that deregulation of a nuclear receptor coactivator complex can give rise to GC resistance. Further characterization of this complex as part of the GR regulatory circuitry could offer novel opportunities for improving the efficacy of GC-based therapies in ALL and other hematologic malignancies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Leucêmica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptores de Glucocorticoides/biossíntese , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Glucocorticoides/efeitos adversos , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Masculino , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiões Promotoras Genéticas/genética , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Interferência de RNA , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
20.
Methods Mol Biol ; 2453: 7-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622318

RESUMO

Immunoglobulin (IG) clonality assessment is a widely used supplementary test for the diagnosis of suspected lymphoid malignancies. The specific rearrangements of the immunoglobulin (IG) heavy and light chain genes act as a unique hallmark of a B-cell lymphoma, a feature that is used in clonality assessment. The widely used BIOMED-2/EuroClonality IG clonality assay, visualized by GeneScanning or heteroduplex analysis, has an unprecedented high detection rate because of the complementarity of this approach. However, the BIOMED-2/EuroClonality clonality assays have been developed for the assessment of specimens with optimal DNA quality. Further improvements for the assessment of samples with suboptimal DNA quality, such as from formalin-fixed paraffin-embedded (FFPE) specimens or specimens with a limited tumor burden, are required. The EuroClonality-NGS Working Group recently developed a next-generation sequencing (NGS)-based clonality assay for the detection of the IG heavy and kappa light chain rearrangements, using the same complementary approach as in the conventional assay. By employing next-generation sequencing, both the sensitivity and specificity of the clonality assay have increased, which not only is very useful for diagnostic clonality testing but also allows robust comparison of clonality patterns in a patient with multiple lymphoma's that have suboptimal DNA quality. Here, we describe the protocols for IG-NGS clonality assessment that are compatible for Ion Torrent and Illumina sequencing platforms including pre-analytical DNA isolation, the analytical phase, and the post-analytical data analysis.


Assuntos
Rearranjo Gênico , Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala , Linfoma de Células B , Análise de Sequência de DNA , Células Clonais/imunologia , DNA/genética , DNA/isolamento & purificação , Rearranjo Gênico/genética , Rearranjo Gênico/imunologia , Genes de Imunoglobulinas/genética , Genes de Imunoglobulinas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Linfoma de Células B/diagnóstico , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA