Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Child Psychol Psychiatry ; 61(5): 545-555, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31849056

RESUMO

BACKGROUND: Mental disorders, including Attention-Deficit/Hyperactivity Disorder (ADHD), have a complex etiology, and identification of underlying genetic risk factors is challenging. This study used a multistep approach to identify and validate a novel risk gene for ADHD and psychiatric comorbidity. METHODS: In a single family, severely affected by ADHD and cooccurring disorders, we applied single nucleotide polymorphism (SNP)-array analysis to detect copy-number variations (CNVs) linked to disease. Genes present in the identified CNV were subsequently tested for their association with ADHD in the largest data set currently available (n = 55,374); this gene-set and gene-based association analyses were based on common genetic variants. Significant findings were taken forward for functional validation using Drosophila melanogaster as biological model system, altering gene expression using the GAL4-UAS system and a pan-neuronal driver, and subsequently characterizing locomotor activity and sleep as functional readouts. RESULTS: We identified a copy number gain in 8p23.3, which segregated with psychiatric phenotypes in the family and was confirmed by quantitative RT-PCR. Common genetic variants in this locus were associated with ADHD, especially those in FBXO25 and TDRP. Overexpression of the FBXO25 orthologue in two Drosophila models consistently led to increased locomotor activity and reduced sleep compared with the genetic background control. CONCLUSIONS: We combine ADHD risk gene identification in an individual family with genetic association testing in a large case-control data set and functional validation in a model system, together providing an important illustration of an integrative approach suggesting that FBXO25 contributes to key features of ADHD and comorbid neuropsychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Drosophila melanogaster/genética , Evolução Molecular , Proteínas F-Box/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Fenótipo , Animais , Pré-Escolar , Comorbidade , Modelos Animais de Doenças , Saúde da Família , Feminino , Humanos , Masculino , Proteínas Nucleares/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética
2.
J Neuromuscul Dis ; 8(4): 715-722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024776

RESUMO

BACKGROUND: Myotonic dystrophy type 2 (DM2) is caused by a CCTG repeat expansion in intron 1 of the CCHC-Type Zinc Finger Nucleic Acid Binding Protein (CNBP) gene. Previous studies indicated that this repeat expansion originates from separate founders. OBJECTIVE: This study was set out to determine whether or not patients with DM2 originating from European and non-European countries carry the previously described European founder haplotypes. METHODS: Haplotype analysis was performed in 59 DM2 patients from 29 unrelated families. Twenty-three families were from European descent and 6 families originated from non-European countries (India, Suriname and Morocco). Seven short tandem repeats (CL3N122, CL3N99, CL3N59, CL3N117, CL3N119, CL3N19 and CL3N23) and 4 single nucleotide polymorphisms (SNP) (rs1871922, rs1384313, rs4303883 and CGAP_886192) in and around the CNBP gene were used to construct patients' haplotypes. These haplotypes were compared to the known DM2 haplotypes to determine the ancestral origin of the CNBP repeat expansion. RESULTS: Of 41 patients, the haplotype could be assigned to the previously described Caucasian haplotypes. Three patients from Morocco and Portugal had a haplotype identical to the earlier reported Moroccan haplotype. Twelve patients from India and Suriname, however, carried a haplotype that seems distinct from the previously reported haplotypes. Three individuals could not be assigned to a specific haplotype. CONCLUSION: The ancestral origin of DM2 in India might be distinct from the Caucasian families and the solely described Japanese patient. However, we were unable to establish this firmly due to the limited genetic variation in the region surrounding the CNBP gene.


Assuntos
Distrofia Miotônica/genética , Adulto , Idoso , Feminino , Haplótipos , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Marrocos , Países Baixos , Portugal , Suriname , Adulto Jovem
3.
Transl Psychiatry ; 11(1): 55, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462198

RESUMO

Cytosolic 5'-nucleotidases II (cNT5-II) are an evolutionary conserved family of 5'-nucleotidases that catalyze the intracellular hydrolysis of nucleotides. In humans, the family is encoded by five genes, namely NT5C2, NT5DC1, NT5DC2, NT5DC3, and NT5DC4. While very little is known about the role of these genes in the nervous system, several of them have been associated with neuropsychiatric disorders. Here, we tested whether manipulating neuronal expression of cNT5-II orthologues affects neuropsychiatric disorders-related phenotypes in the model organism Drosophila melanogaster. We investigated the brain expression of Drosophila orthologues of cNT5-II family (dNT5A-CG2277, dNT5B-CG32549, and dNT5C-CG1814) using quantitative real-time polymerase chain reaction (qRT-PCR). Using the UAS/Gal4 system, we also manipulated the expression of these genes specifically in neurons. The knockdown was subjected to neuropsychiatric disorder-relevant behavioral assays, namely light-off jump reflex habituation and locomotor activity, and sleep was measured. In addition, neuromuscular junction synaptic morphology was assessed. We found that dNT5A, dNT5B, and dNT5C were all expressed in the brain. dNT5C was particularly enriched in the brain, especially at pharate and adult stages. Pan-neuronal knockdown of dNT5A and dNT5C showed impaired habituation learning. Knockdown of each of the genes also consistently led to mildly reduced activity and/or increased sleep. None of the knockdown models displayed significant alterations in synaptic morphology. In conclusion, in addition to genetic associations with psychiatric disorders in humans, altered expression of cNT5-II genes in the Drosophila nervous system plays a role in disease-relevant behaviors.


Assuntos
Proteínas de Drosophila , Drosophila , 5'-Nucleotidase/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Locomoção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA