Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Genet Mol Biol ; 35(1): 172-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22481892

RESUMO

Angiosperm and gymnosperm plants evolved from a common ancestor about 300 million years ago. Apart from morphological and structural differences in embryogenesis and seed origin, a set of embryogenesis-regulating genes and the molecular mechanisms involved in embryo development seem to have been conserved alike in both taxa. Few studies have covered molecular aspects of embryogenesis in the Brazilian pine, the only economically important native conifer in Brazil. Thus eight embryogenesis-regulating genes, viz., ARGONAUTE 1, CUP-SHAPED COTYLEDON 1, WUSCHEL-related WOX, S-LOCUS LECTIN PROTEIN KINASE, SCARECROW-like, VICILIN 7S, LEAFY COTYLEDON 1, and REVERSIBLE GLYCOSYLATED POLYPEPTIDE 1, were analyzed through semi-quantitative RT-PCR during embryo development and germination. All the eight were found to be differentially expressed in the various developmental stages of zygotic embryos, seeds and seedling tissues. To our knowledge, this is the first report on embryogenesis-regulating gene expression in members of the Araucariaceae family, as well as in plants with recalcitrant seeds.

2.
Plant Sci ; 195: 80-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22921001

RESUMO

In this work, it was observed a straight relationship between the manipulation of the reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio, nitric oxide emission and quality and number of early somatic embryos in Araucaria angustifolia, a Brazilian endangered native conifer. In low concentrations GSH (0.01 and 0.1mM) is a potential NO scavenger in the culture medium. Furthermore, it can increase the number of early SE formed in cell suspension culture media in a few days. However, the maintenance in this low redox state lead to a loss of early somatic embryos polarization. In gelled culture medium, high levels of GSH (5mM) allows the development of globular embryos presenting a high NO emission on embryo apex, stressing its importance in the differentiation and cell division. Taken together these results indicate that the modification of the embryogenic cultures redox state might be an effective strategy to develop more efficient embryogenic systems in A. angustifolia.


Assuntos
Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Óxido Nítrico/metabolismo , Desenvolvimento Vegetal , Técnicas de Embriogênese Somática de Plantas/métodos , Sementes/crescimento & desenvolvimento , Traqueófitas/embriologia , Brasil , Divisão Celular , Espécies em Perigo de Extinção , Oxirredução , Sementes/metabolismo , Traqueófitas/metabolismo
3.
Plant Cell Rep ; 27(2): 335-45, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17968554

RESUMO

Sugarcane is generally propagated by cuttings of the stalk containing one or more lateral buds, which will develop into a new plant. The transition from the dormant into the active stage constitutes a complex phenomenon characterized by changes in accumulation of phytohormones and several other physiological aspects. Abscisic acid (ABA) and methyl-jasmonate (MeJA) are major signaling molecules, which influence plant development and stress responses. These plant regulators modulate gene expression with the participation of many transcriptional factors. Basic leucine zipper proteins (bZIPs) form a large family of transcriptional factors involved in a variety of plant physiological processes, such as development and responses to stress. Query sequences consisting of full-length protein sequence of each of the Arabidopsis bZIP families were utilized to screen the sugarcane EST database (SUCEST) and 86 sugarcane assembled sequences (SAS) coding for bZIPs were identified. cDNA arrays and RNA-gel blots were used to study the expression of these sugarcane bZIP genes during early plantlet development and in response to ABA and MeJA. Six bZIP genes were found to be differentially expressed during development. ABA and MeJA modulated the expression of eight sugarcane bZIP genes. Our findings provide novel insights into the expression of this large protein family of transcriptional factors in sugarcane.


Assuntos
Ácido Abscísico/farmacologia , Acetatos/farmacologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Saccharum/genética , Sequência de Aminoácidos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Genes de Plantas/genética , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos
4.
Genet. mol. biol ; 35(1): 172-181, 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-616981

RESUMO

Angiosperm and gymnosperm plants evolved from a common ancestor about 300 million years ago. Apart from morphological and structural differences in embryogenesis and seed origin, a set of embryogenesis-regulating genes and the molecular mechanisms involved in embryo development seem to have been conserved alike in both taxa. Few studies have covered molecular aspects of embryogenesis in the Brazilian pine, the only economically important native conifer in Brazil. Thus eight embryogenesis-regulating genes, viz.,ARGONAUTE 1, CUP-SHAPED COTYLEDON 1, WUSCHEL-related WOX, S-LOCUS LECTIN PROTEIN KINASE, SCARECROW-like, VICILIN 7S, LEAFY COTYLEDON 1, and REVERSIBLE GLYCOSYLATED POLYPEPTIDE 1, were analyzed through semiquantitative RT-PCR during embryo development and germination. All the eight were found to be differentially expressed in the various developmental stages of zygotic embryos, seeds and seedling tissues. To our knowledge, this is the first report on embryogenesis-regulating gene expression in members of the Araucariaceae family, as well as in plants with recalcitrant seeds.


Assuntos
Traqueófitas/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Brasil , Traqueófitas/genética , Sementes/crescimento & desenvolvimento
5.
Genet. mol. biol ; 30(2): 423-427, Mar. 2007. tab, mapas, ilus
Artigo em Inglês | LILACS | ID: lil-452821

RESUMO

The Araucaria angustifolia (Bert.) O. Kuntze, also named the "paraná pine" (pinheiro-do-Paraná in Portuguese), is a native conifer species naturally occurring in the Brazilian Tropical Atlantic Forest which in Brazil is mostly limited to the southern Brazilian states of Paraná, Santa Catarina and Rio Grande do Sul. Chloroplast DNA markers (cpDNA) are useful in populational genetic studies because of their low substitution rate and the uniparental transmission. The conservation of cpDNA genes between species has allowed the design of consensus chloroplast primers that have had a great impact on population genetics and phylogenetic studies. In this study we used the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP) to characterize the genetic diversity of the chloroplast genome in nine natural A. angustifolia populations. Among the 141 trees surveyed we found 12 different cpDNA haplotypes and demonstrated that A. angustifolia has high levels of total diversity (hT = 0.612) and an average within-population diversity (hS) of 0.441, suggesting the presence of high within-population variation. The estimated genetic divergence could be helpful in designing breeding programs and species conservation strategies, although additional studies with a larger number of populations and trees is essential for a better understanding of gene flow and the inheritance of major Araucaria angustifolia traits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA