Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Biol Chem ; 297(2): 100937, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34224731

RESUMO

The endoplasmic reticulum (ER) is a membrane-bound organelle responsible for protein folding, lipid synthesis, and calcium homeostasis. Maintenance of ER structural integrity is crucial for proper function, but much remains to be learned about the molecular players involved. To identify proteins that support the structure of the ER, we performed a proteomic screen and identified nodal modulator (NOMO), a widely conserved type I transmembrane protein of unknown function, with three nearly identical orthologs specified in the human genome. We found that overexpression of NOMO1 imposes a sheet morphology on the ER, whereas depletion of NOMO1 and its orthologs causes a collapse of ER morphology concomitant with the formation of membrane-delineated holes in the ER network positive for the lysosomal marker lysosomal-associated protein 1. In addition, the levels of key players of autophagy including microtubule-associated protein light chain 3 and autophagy cargo receptor p62/sequestosome 1 strongly increase upon NOMO depletion. In vitro reconstitution of NOMO1 revealed a "beads on a string" structure likely representing consecutive immunoglobulin-like domains. Extending NOMO1 by insertion of additional immunoglobulin folds results in a correlative increase in the ER intermembrane distance. Based on these observations and a genetic epistasis analysis including the known ER-shaping proteins Atlastin2 and Climp63, we propose a role for NOMO1 in the functional network of ER-shaping proteins.


Assuntos
Retículo Endoplasmático , Proteômica , Proteína Sequestossoma-1 , Autofagia , Estresse do Retículo Endoplasmático , Homeostase , Humanos , Lisossomos/metabolismo
2.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563018

RESUMO

DYT1 dystonia is a debilitating neurological movement disorder that arises upon Torsin ATPase deficiency. Nuclear envelope (NE) blebs that contain FG-nucleoporins (FG-Nups) and K48-linked ubiquitin are the hallmark phenotype of Torsin manipulation across disease models of DYT1 dystonia. While the aberrant deposition of FG-Nups is caused by defective nuclear pore complex assembly, the source of K48-ubiquitylated proteins inside NE blebs is not known. Here, we demonstrate that the characteristic K48-ubiquitin accumulation inside blebs requires p97 activity. This activity is highly dependent on the p97 adaptor UBXD1. We show that p97 does not significantly depend on the Ufd1/Npl4 heterodimer to generate the K48-ubiquitylated proteins inside blebs, nor does inhibiting translation affect the ubiquitin sequestration in blebs. However, stimulating global ubiquitylation by heat shock greatly increases the amount of K48-ubiquitin sequestered inside blebs. These results suggest that blebs have an extraordinarily high capacity for sequestering ubiquitylated protein generated in a p97-dependent manner. The p97/UBXD1 axis is thus a major factor contributing to cellular DYT1 dystonia pathology and its modulation represents an unexplored potential for therapeutic development.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Adenosina Trifosfatases , Proteínas Relacionadas à Autofagia , Distonia , Membrana Nuclear , Proteínas Nucleares , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Estruturas da Membrana Celular/metabolismo , Distonia/genética , Distonia/metabolismo , Distonia Muscular Deformante , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo
3.
Crit Rev Biochem Mol Biol ; 50(6): 532-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26592310

RESUMO

Torsin ATPases (Torsins) belong to the widespread AAA+ (ATPases associated with a variety of cellular activities) family of ATPases, which share structural similarity but have diverse cellular functions. Torsins are outliers in this family because they lack many characteristics of typical AAA+ proteins, and they are the only members of the AAA+ family located in the endoplasmic reticulum and contiguous perinuclear space. While it is clear that Torsins have essential roles in many, if not all metazoans, their precise cellular functions remain elusive. Studying Torsins has significant medical relevance since mutations in Torsins or Torsin-associated proteins result in a variety of congenital human disorders, the most frequent of which is early-onset torsion (DYT1) dystonia, a severe movement disorder. A better understanding of the Torsin system is needed to define the molecular etiology of these diseases, potentially enabling corrective therapy. Here, we provide a comprehensive overview of the Torsin system in metazoans, discuss functional clues obtained from various model systems and organisms and provide a phylogenetic and structural analysis of Torsins and their regulatory cofactors in relation to disease-causative mutations. Moreover, we review recent data that have led to a dramatically improved understanding of these machines at a molecular level, providing a foundation for investigating the molecular defects underlying the associated movement disorders. Lastly, we discuss our ideas on how recent progress may be utilized to inform future studies aimed at determining the cellular role(s) of these atypical molecular machines and their implications for dystonia treatment options.


Assuntos
Chaperonas Moleculares/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/análise , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Mutação , Transporte Proteico , Alinhamento de Sequência
4.
J Biol Chem ; 291(18): 9469-81, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26953341

RESUMO

Torsin ATPases are the only representatives of the AAA+ ATPase family that reside in the lumen of the endoplasmic reticulum (ER) and nuclear envelope. Two of these, TorsinA and TorsinB, are anchored to the ER membrane by virtue of an N-terminal hydrophobic domain. Here we demonstrate that the imposition of ER stress leads to a proteolytic cleavage event that selectively removes the hydrophobic domain from the AAA+ domain of TorsinA, which retains catalytic activity. Both the pharmacological inhibition profile and the identified cleavage site between two juxtaposed cysteine residues are distinct from those of presently known proteases, suggesting that a hitherto uncharacterized, membrane-associated protease accounts for TorsinA processing. This processing occurs not only in stress-exposed cell lines but also in primary cells from distinct organisms including stimulated B cells, indicating that Torsin conversion in response to physiologically relevant stimuli is an evolutionarily conserved process. By establishing 5-nitroisatin as a cell-permeable inhibitor for Torsin processing, we provide the methodological framework for interfering with Torsin processing in a wide range of primary cells without the need for genetic manipulation.


Assuntos
Linfócitos B/metabolismo , Membrana Celular/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Ativação Linfocitária/fisiologia , Chaperonas Moleculares/metabolismo , Proteólise , Linfócitos B/citologia , Membrana Celular/genética , Retículo Endoplasmático/genética , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/genética , Estrutura Terciária de Proteína , Transporte Proteico/fisiologia
5.
Mol Cell ; 36(1): 28-38, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19818707

RESUMO

YOD1 is a highly conserved deubiquitinating enzyme of the ovarian tumor (otubain) family, whose function has yet to be assigned in mammalian cells. YOD1 is a constituent of a multiprotein complex with p97 as its nucleus, suggesting a functional link to a pathway responsible for the dislocation of misfolded proteins from the endoplasmic reticulum. Expression of a YOD1 variant deprived of its deubiquitinating activity imposes a halt on the dislocation reaction, as judged by the stabilization of various dislocation substrates. Accordingly, we observe an increase in polyubiquitinated dislocation intermediates in association with p97 in the cytosol. This dominant-negative effect is dependent on the UBX and Zinc finger domains, appended to the N and C terminus of the catalytic otubain core domain, respectively. The assignment of a p97-associated ubiquitin processing function to YOD1 adds to our understanding of p97's role in the dislocation process.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Endopeptidases/fisiologia , Retículo Endoplasmático/metabolismo , Dobramento de Proteína , Transporte Proteico/fisiologia , Tioléster Hidrolases/fisiologia , Adenosina Trifosfatases/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação Puntual/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transfecção , Ubiquitina/metabolismo , Ubiquitinação/genética , Proteína com Valosina , Dedos de Zinco/fisiologia , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
6.
Proc Natl Acad Sci U S A ; 111(45): E4822-31, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25352667

RESUMO

Torsins are membrane-associated ATPases whose activity is dependent on two activating cofactors, lamina-associated polypeptide 1 (LAP1) and luminal domain-like LAP1 (LULL1). The mechanism by which these cofactors regulate Torsin activity has so far remained elusive. In this study, we identify a conserved domain in these activators that is predicted to adopt a fold resembling an AAA+ (ATPase associated with a variety of cellular activities) domain. Within these domains, a strictly conserved Arg residue present in both activating cofactors, but notably missing in Torsins, aligns with a key catalytic Arg found in AAA+ proteins. We demonstrate that cofactors and Torsins associate to form heterooligomeric assemblies with a defined Torsin-activator interface. In this arrangement, the highly conserved Arg residue present in either cofactor comes into close proximity with the nucleotide bound in the neighboring Torsin subunit. Because this invariant Arg is strictly required to stimulate Torsin ATPase activity but is dispensable for Torsin binding, we propose that LAP1 and LULL1 regulate Torsin ATPase activity through an active site complementation mechanism.


Assuntos
Adenosina Trifosfatases , Proteínas de Transporte , Proteínas de Choque Térmico HSC70 , Proteínas de Membrana , Chaperonas Moleculares , Complexos Multiproteicos , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Domínio Catalítico , Coenzimas/química , Coenzimas/genética , Coenzimas/metabolismo , Ativação Enzimática/fisiologia , Células HEK293 , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
7.
J Virol ; 89(16): 8444-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041288

RESUMO

UNLABELLED: TorsinA is a membrane-tethered AAA+ ATPase implicated in nuclear envelope dynamics as well as the nuclear egress of herpes simplex virus 1 (HSV-1). The activity of TorsinA and the related ATPase TorsinB strictly depends on LAP1 and LULL1, type II transmembrane proteins that are integral parts of the Torsin/cofactor AAA ring, forming a composite, membrane-spanning assembly. Here, we use CRISPR/Cas9-mediated genome engineering to create single- and double knockout (KO) cell lines of TorA and TorB as well as their activators, LAP1 and LULL1, to investigate the effect on HSV-1 production. Consistent with LULL1 being the more potent Torsin activator, a LULL1 KO reduces HSV-1 growth by one order of magnitude, while the deletion of other components of the Torsin system in combination causes subtle defects. Notably, LULL1 deficiency leads to a 10-fold decrease in the number of viral genomes per host cell without affecting viral protein production, allowing us to tentatively assign LULL1 to an unexpected role that precedes HSV-1 nuclear egress. IMPORTANCE: In this study, we conduct the first comprehensive genetic and phenotypic analysis of the Torsin/cofactor system in the context of HSV-1 infection, establishing LULL1 as the most important component of the Torsin system with respect to viral production.


Assuntos
Proteínas de Transporte/metabolismo , Engenharia Genética/métodos , Herpesvirus Humano 1/crescimento & desenvolvimento , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Sistemas CRISPR-Cas/genética , Primers do DNA/genética , Técnicas de Inativação de Genes , Células HeLa , Herpesvirus Humano 1/metabolismo , Humanos , Immunoblotting , Microscopia Eletrônica , Ensaio de Placa Viral
8.
Proc Natl Acad Sci U S A ; 110(17): E1545-54, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569223

RESUMO

TorsinA is a membrane-associated AAA+ (ATPases associated with a variety of cellular activities) ATPase implicated in primary dystonia, an autosomal-dominant movement disorder. We reconstituted TorsinA and its cofactors in vitro and show that TorsinA does not display ATPase activity in isolation; ATP hydrolysis is induced upon association with LAP1 and LULL1, type II transmembrane proteins residing in the nuclear envelope and endoplasmic reticulum. This interaction requires TorsinA to be in the ATP-bound state, and can be attributed to the luminal domains of LAP1 and LULL1. This ATPase activator function controls the activities of other members of the Torsin family in distinct fashion, leading to an acceleration of the hydrolysis step by up to two orders of magnitude. The dystonia-causing mutant of TorsinA is defective in this activation mechanism, suggesting a loss-of-function mechanism for this congenital disorder.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Distonia Muscular Deformante/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Cromatografia em Gel , Clonagem Molecular , Distonia Muscular Deformante/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólise , Immunoblotting , Imunoprecipitação , Chaperonas Moleculares/genética
9.
J Biol Chem ; 289(1): 552-64, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24275647

RESUMO

Torsins are membrane-tethered AAA+ ATPases residing in the nuclear envelope (NE) and endoplasmic reticulum (ER). Here, we show that the induction of a conditional, dominant-negative TorsinB variant provokes a profound reorganization of the endomembrane system into foci containing double membrane structures that are derived from the ER. These double-membrane sinusoidal structures are formed by compressing the ER lumen to a constant width of 15 nm, and are highly enriched in the ATPase activator LULL1. Further, we define an important role for a highly conserved aromatic motif at the C terminus of Torsins. Mutations in this motif perturb LULL1 binding, reduce ATPase activity, and profoundly limit the induction of sinusoidal structures.


Assuntos
Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/enzimologia , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Mutação
10.
Biochem Soc Trans ; 43(5): 874-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517897

RESUMO

Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class: tetratricopeptide repeat (TPR) proteins. In previous work, we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena (2011) Prot. Sci. 20: , 1042-1047; Main (2003) Structure 11: , 497-508]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena (2009) ACS Chem. Biol. 5: , 545-552; Cortajarena (2008) ACS Chem. Biol. 3: , 161-166; Jackrel (2009) Prot. Sci. 18: , 762-774; Kajander (2007) Acta Crystallogr. D Biol. Crystallogr. 63: , 800-811]. Here we focus on the development of one such TPR-peptide interaction for a practical application, affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications.


Assuntos
Indicadores e Reagentes/química , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Sequências Repetitivas de Aminoácidos , Animais , Linhagem Celular , Cromatografia de Afinidade , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/genética , Proteínas Imobilizadas/metabolismo , Indicadores e Reagentes/metabolismo , Ligantes , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Blood ; 121(7): 1145-56, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23243279

RESUMO

Antigen presenting cells (APCs) that express a catalytically inactive version of the deubiquitylase YOD1 (YOD1-C160S) present exogenous antigens more efficiently to CD8(+) T cells, both in vitro and in vivo. Compared with controls, immunization of YOD1-C160S mice led to greater expansion of specific CD8(+) T cells and showed improved control of infection with a recombinant -herpes virus, MHV-68, engineered to express SIINFEKL peptide, the ligand for the ovalbumin-specific TCR transgenic OT-I cells. Enhanced expansion of specific CD8(+) T cells was likewise observed on infection of YOD1-C160S mice with a recombinant influenza A virus expressing SIINFEKL. YOD1-C160S APCs retained antigen longer than did control APCs. Enhanced crosspresentation by YOD1-C160S APCs was transporter associated with antigen processing (TAP1)-independent but sensitive to inclusion of inhibitors of acidification and of the proteasome. The activity of deubiquitylating enzymes may thus help control antigenspecific CD8(+) T-cell responses during immunization.


Assuntos
Apresentação Cruzada , Mutação de Sentido Incorreto , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/imunologia , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/imunologia , Transferência Adotiva , Animais , Células Apresentadoras de Antígenos/enzimologia , Células Apresentadoras de Antígenos/imunologia , Brefeldina A/farmacologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/efeitos dos fármacos , Apresentação Cruzada/genética , Feminino , Concentração de Íons de Hidrogênio , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/imunologia , Fragmentos de Peptídeos/imunologia , Rhadinovirus/imunologia , Rhadinovirus/patogenicidade , Ubiquitina Tiolesterase/metabolismo
12.
PLoS Biol ; 8(3): e1000605, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21468303

RESUMO

Ubiquitin-dependent processes control much of cellular physiology. We show that expression of a highly active, Epstein-Barr virus-derived deubiquitylating enzyme (EBV-DUB) blocks proteasomal degradation of cytosolic and ER-derived proteins by preemptive removal of ubiquitin from proteasome substrates, a treatment less toxic than the use of proteasome inhibitors. Recognition of misfolded proteins in the ER lumen, their dislocation to the cytosol, and degradation are usually tightly coupled but can be uncoupled by the EBV-DUB: a misfolded glycoprotein that originates in the ER accumulates in association with cytosolic chaperones as a deglycosylated intermediate. Our data underscore the necessity of a DUB activity for completion of the dislocation reaction and provide a new means of inhibition of proteasomal proteolysis with reduced cytotoxicity.


Assuntos
Herpesvirus Humano 4/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Biocatálise , Linhagem Celular , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Transporte Proteico , Especificidade por Substrato
13.
Proc Natl Acad Sci U S A ; 108(5): 1763-70, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209336

RESUMO

The ubiquitin (Ub)-related modifier Urm1 functions as a sulfur carrier in tRNA thiolation by means of a mechanism that requires the formation of a thiocarboxylate at the C-terminal glycine residue of Urm1. However, whether Urm1 plays an additional role as a Ub-like protein modifier remains unclear. Here, we show that Urm1 is conjugated to lysine residues of target proteins and that oxidative stress enhances protein urmylation in both Saccharomyces cerevisiae and mammalian cells. Similar to ubiquitylation, urmylation involves a thioester intermediate and results in the formation of a covalent peptide bond between Urm1 and its substrates. In contrast to modification by canonical Ub-like modifiers, however, conjugation of Urm1 involves a C-terminal thiocarboxylate of the modifier. We have confirmed that the peroxiredoxin Ahp1 is such a substrate in S. cerevisiae and found that Urm1 targets a specific lysine residue of Ahp1 in vivo. In addition, we have identified several unique substrates in mammalian cells and show that Urm1 targets at least two pathways on oxidant treatment. First, Urm1 is appended to lysine residues of three components that function in its own pathway (i.e., MOCS3, ATPBD3, and CTU2). Second, Urm1 is conjugated to the nucleocytoplasmic shuttling factor cellular apoptosis susceptibility protein. Thus, Urm1 has a conserved dual role by integrating the functions of prokaryotic sulfur carriers with those of eukaryotic protein modifiers of the Ub family.


Assuntos
Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitinas/fisiologia , Cromatografia Líquida , Diamida/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Estresse Oxidativo , Proteômica , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem , Ubiquitinação , Ubiquitinas/metabolismo
14.
FEBS Lett ; 597(20): 2534-2545, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37620293

RESUMO

The nuclear pore complex (NPC) is among the most elaborate protein complexes in eukaryotes. While ribosomes and proteasomes are known to require dedicated assembly machinery, our understanding of NPC assembly is at a relatively early stage. Defects in NPC assembly or homeostasis are tied to movement disorders, including dystonia and amyotrophic lateral sclerosis (ALS), as well as aging, requiring a better understanding of these processes to enable therapeutic intervention. Here, we discuss recent progress in the understanding of NPC assembly and highlight how related defects in human disorders can shed light on NPC biogenesis. We propose that the condensation of phenylalanine-glycine repeat nucleoporins needs to be carefully controlled during NPC assembly to prevent aberrant condensation, aggregation, or amyloid formation.

15.
Sci Rep ; 12(1): 11233, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787659

RESUMO

How does the mind organize thoughts? The hippocampal-entorhinal complex is thought to support domain-general representation and processing of structural knowledge of arbitrary state, feature and concept spaces. In particular, it enables the formation of cognitive maps, and navigation on these maps, thereby broadly contributing to cognition. It has been proposed that the concept of multi-scale successor representations provides an explanation of the underlying computations performed by place and grid cells. Here, we present a neural network based approach to learn such representations, and its application to different scenarios: a spatial exploration task based on supervised learning, a spatial navigation task based on reinforcement learning, and a non-spatial task where linguistic constructions have to be inferred by observing sample sentences. In all scenarios, the neural network correctly learns and approximates the underlying structure by building successor representations. Furthermore, the resulting neural firing patterns are strikingly similar to experimentally observed place and grid cell firing patterns. We conclude that cognitive maps and neural network-based successor representations of structured knowledge provide a promising way to overcome some of the short comings of deep learning towards artificial general intelligence.


Assuntos
Células de Grade , Idioma , Cognição , Modelos Neurológicos , Redes Neurais de Computação
16.
Cell Rep ; 41(8): 111675, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417855

RESUMO

Many human diseases are caused by mutations in nuclear envelope (NE) proteins. How protein homeostasis and disease etiology are interconnected at the NE is poorly understood. Specifically, the identity of local ubiquitin ligases that facilitate ubiquitin-proteasome-dependent NE protein turnover is presently unknown. Here, we employ a short-lived, Lamin B receptor disease variant as a model substrate in a genetic screen to uncover key elements of NE protein turnover. We identify the ubiquitin-conjugating enzymes (E2s) Ube2G2 and Ube2D3, the membrane-resident ubiquitin ligases (E3s) RNF5 and HRD1, and the poorly understood protein TMEM33. RNF5, but not HRD1, requires TMEM33 both for efficient biosynthesis and function. Once synthesized, RNF5 responds dynamically to increased substrate levels at the NE by departing from the endoplasmic reticulum, where HRD1 remains confined. Thus, mammalian protein quality control machinery partitions between distinct cellular compartments to address locally changing substrate loads, establishing a robust cellular quality control system.


Assuntos
Proteínas de Membrana , Ubiquitina-Proteína Ligases , Animais , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Mamíferos/metabolismo
17.
Nat Cell Biol ; 24(11): 1630-1641, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36302970

RESUMO

DYT1 dystonia is a debilitating neurological movement disorder arising from mutation in the AAA+ ATPase TorsinA. The hallmark of Torsin dysfunction is nuclear envelope blebbing resulting from defects in nuclear pore complex biogenesis. Whether blebs actively contribute to disease manifestation is unknown. We report that FG-nucleoporins in the bleb lumen form aberrant condensates and contribute to DYT1 dystonia by provoking two proteotoxic insults. Short-lived ubiquitylated proteins that are normally rapidly degraded partition into the bleb lumen and become stabilized. In addition, blebs selectively sequester a specific HSP40-HSP70 chaperone network that is modulated by the bleb component MLF2. MLF2 suppresses the ectopic accumulation of FG-nucleoporins and modulates the selective properties and size of condensates in vitro. Our study identifies dual mechanisms of proteotoxicity in the context of condensate formation and establishes FG-nucleoporin-directed activities for a nuclear chaperone network.


Assuntos
Distonia , Membrana Nuclear , Humanos , Distonia/metabolismo , Membrana Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo
19.
Proc Natl Acad Sci U S A ; 105(47): 18255-60, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19017811

RESUMO

Urm1 is a highly conserved ubiquitin-related modifier of unknown function. A reduction of cellular Urm1 levels causes severe cytokinesis defects in HeLa cells, resulting in the accumulation of enlarged multinucleated cells. To understand the underlying mechanism, we applied a functional proteomics approach and discovered an enzymatic activity that links Urm1 to a tRNA modification pathway. Unlike ubiquitin (Ub) and many Ub-like modifiers, which are commonly conjugated to proteinaceous targets, Urm1 is activated by an unusual mechanism to yield a thiocarboxylate intermediate that serves as sulfur donor in tRNA thiolation reactions. This mechanism is reminiscent of that used by prokaryotic sulfur carriers and thus defines the evolutionary link between ancient Ub progenitors and the eukaryotic Ub/Ub-like modification systems.


Assuntos
Proteômica , RNA de Transferência/metabolismo , Ubiquitinas/metabolismo , Ciclo Celular , Cromatografia de Afinidade , Citometria de Fluxo , Células HeLa , Humanos , Microscopia Confocal , Espectrometria de Massas em Tandem
20.
Mol Biol Cell ; 31(13): 1315-1323, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530796

RESUMO

The nuclear envelope (NE) is continuous with the endoplasmic reticulum (ER), yet the NE carries out many functions distinct from those of bulk ER. This functional specialization depends on a unique protein composition that defines NE identity and must be both established and actively maintained. The NE undergoes extensive remodeling in interphase and mitosis, so mechanisms that seal NE holes and protect its unique composition are critical for maintaining its functions. New evidence shows that closure of NE holes relies on regulated de novo lipid synthesis, providing a link between lipid metabolism and generating and maintaining NE identity. Here, we review regulation of the lipid bilayers of the NE and suggest ways to generate lipid asymmetry across the NE despite its direct continuity with the ER. We also discuss the elusive mechanism of membrane fusion during nuclear pore complex (NPC) biogenesis. We propose a model in which NPC biogenesis is carefully controlled to ensure that a permeability barrier has been established before membrane fusion, thereby avoiding a major threat to compartmentalization.


Assuntos
Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Membrana Nuclear/metabolismo , Animais , Ciclo Celular , Humanos , Fusão de Membrana , Mitose , Membrana Nuclear/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA