Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Magn Reson Med ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703028

RESUMO

PURPOSE: In this work, the use of joint Total Generalized Variation (TGV) regularization to improve Multipool-Lorentzian fitting of chemical exchange saturation transfer (CEST) Spectra in terms of stability and parameter signal-to-noise ratio (SNR) was investigated. THEORY AND METHODS: The joint TGV term was integrated into the nonlinear parameter fitting problem. To increase convergence and weight the gradients, preconditioning using a voxel-wise singular value decomposition was applied to the problem, which was then solved using the iteratively regularized Gauss-Newton method combined with a Primal-Dual splitting algorithm. The TGV method was evaluated on simulated numerical phantoms, 3T phantom data and 7T in vivo data with respect to systematic errors and robustness. Three reference methods were also implemented: The standard nonlinear fitting, a method using a nonlocal-means filter for denoising and the pyramid scheme, which uses downsampled images to acquire accurate start values. RESULTS: The proposed regularized fitting method showed significantly improved robustness (compared to the reference methods). In testing, over a range of SNR values the TGV fit outperformed the other methods and showed accurate results even for large amounts of added noise. Parameter values found were closer or comparable to the ground truth. For in vivo datasets, the added regularization increased the parameter map SNR and prevented instabilities. CONCLUSION: The proposed fitting method using TGV regularization leads to improved results over a range of different data-sets and noise levels. Furthermore, it can be applied to all Z-spectrum data, with different amounts of pools, where the improved SNR and stability can increase diagnostic confidence.

3.
Magn Reson Med ; 91(4): 1354-1367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38073061

RESUMO

PURPOSE: Amide proton transfer-weighted (APTw) MRI at 3T provides a unique contrast for brain tumor imaging. However, APTw imaging suffers from hyperintensities in liquid compartments such as cystic or necrotic structures and provides a distorted APTw signal intensity. Recently, it has been shown that heuristically motivated fluid suppression can remove such artifacts and significantly improve the readability of APTw imaging. THEORY AND METHODS: In this work, we show that the fluid suppression can actually be understood by the known concept of spillover dilution, which itself can be derived from the Bloch-McConnell equations in comparison to the heuristic approach. Therefore, we derive a novel post-processing formula that efficiently removes fluid artifact, and explains previous approaches. We demonstrate the utility of this APTw assessment in silico, in vitro, and in vivo in brain tumor patients acquired at MR scanners from different vendors. RESULTS: Our results show a reduction of the CEST signals from fluid environments while keeping the APTw-CEST signal intensity almost unchanged for semi-solid tissue structures such as the contralateral normal appearing white matter. This further allows us to use the same color bar settings as for conventional APTw imaging. CONCLUSION: Fluid suppression has considerable value in improving the readability of APTw maps in the neuro-oncological field. In this work, we derive a novel post-processing formula from the underlying Bloch-McConnell equations that efficiently removes fluid artifact, and explains previous approaches which justify the derivation of this metric from a theoretical point of view, to reassure the scientific and medical field about its use.


Assuntos
Neoplasias Encefálicas , Substância Branca , Humanos , Prótons , Amidas , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Substância Branca/patologia
4.
NMR Biomed ; 37(5): e5096, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38343093

RESUMO

Chemical exchange saturation transfer (CEST) is a magnetic resonance (MR) imaging method providing molecular image contrasts based on indirect detection of low concentrated solutes. Previous CEST studies focused predominantly on the imaging of single CEST exchange regimes (e.g., slow, intermediate or fast exchanging groups). In this work, we aim to establish a so-called comprehensive CEST protocol for 7 T, covering the different exchange regimes by three saturation B1 amplitude regimes: low, intermediate and high. We used the results of previous publications and our own simulations in pulseq-CEST to produce a 7 T CEST protocol that has sensitivity to these three B1 regimes. With postprocessing optimization (simultaneous mapping of water shift and B1, B0-fitting, multiple interleaved mode saturation B1 correction, neural network employment (deepCEST) and analytical input feature reduction), we are able to shorten our initially 40 min protocol to 15 min and generate six CEST contrast maps simultaneously. With this protocol, we measured four healthy subjects and one patient with a brain tumor. We established a comprehensive CEST protocol for clinical 7 T MRI, covering three different B1 amplitude regimes. We were able to reduce the acquisition time significantly by more than 50%, while still maintaining decent image quality and contrast in healthy subjects and one patient with a tumor. Our protocol paves the way to perform comprehensive CEST studies in clinical scan times for hypothesis generation regarding molecular properties of certain pathologies, for example, ischemic stroke or high-grade brain tumours.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Redes Neurais de Computação , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
5.
Strahlenther Onkol ; 200(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163834

RESUMO

Accurate Magnetic Resonance Imaging (MRI) simulation is fundamental for high-precision stereotactic radiosurgery and fractionated stereotactic radiotherapy, collectively referred to as stereotactic radiotherapy (SRT), to deliver doses of high biological effectiveness to well-defined cranial targets. Multiple MRI hardware related factors as well as scanner configuration and sequence protocol parameters can affect the imaging accuracy and need to be optimized for the special purpose of radiotherapy treatment planning. MRI simulation for SRT is possible for different organizational environments including patient referral for imaging as well as dedicated MRI simulation in the radiotherapy department but require radiotherapy-optimized MRI protocols and defined quality standards to ensure geometrically accurate images that form an impeccable foundation for treatment planning. For this guideline, an interdisciplinary panel including experts from the working group for radiosurgery and stereotactic radiotherapy of the German Society for Radiation Oncology (DEGRO), the working group for physics and technology in stereotactic radiotherapy of the German Society for Medical Physics (DGMP), the German Society of Neurosurgery (DGNC), the German Society of Neuroradiology (DGNR) and the German Chapter of the International Society for Magnetic Resonance in Medicine (DS-ISMRM) have defined minimum MRI quality requirements as well as advanced MRI simulation options for cranial SRT.


Assuntos
Radioterapia (Especialidade) , Radiocirurgia , Humanos , Radiocirurgia/métodos , Imageamento por Ressonância Magnética , Dosagem Radioterapêutica , Imageamento Tridimensional
6.
Nervenarzt ; 2024 Apr 29.
Artigo em Alemão | MEDLINE | ID: mdl-38683354

RESUMO

BACKGROUND: Magnetic resonance (MRI) imaging of the skeletal muscles (muscle MRI for short) is increasingly being used in clinical routine for diagnosis and longitudinal assessment of muscle disorders. However, cross-centre standards for measurement protocol and radiological assessment are still lacking. OBJECTIVES: The aim of this expert recommendation is to present standards for the application and interpretation of muscle MRI in hereditary and inflammatory muscle disorders. METHODS: This work was developed in collaboration between neurologists, neuroradiologists, radiologists, neuropaediatricians, neuroscientists and MR physicists from different university hospitals in Germany. The recommendations are based on expert knowledge and a focused literature search. RESULTS: The indications for muscle MRI are explained, including the detection and monitoring of structural tissue changes and oedema in the muscle, as well as the identification of a suitable biopsy site. Recommendations for the examination procedure and selection of appropriate MRI sequences are given. Finally, steps for a structured radiological assessment are presented. CONCLUSIONS: The present work provides concrete recommendations for the indication, implementation and interpretation of muscle MRI in muscle disorders. Furthermore, it provides a possible basis for the standardisation of the measurement protocols at all clinical centres in Germany.

7.
Magn Reson Med ; 90(4): 1345-1362, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37357374

RESUMO

PURPOSE: An end-to-end differentiable 2D Bloch simulation is used to reduce T2 induced blurring in single-shot turbo spin echo sequences, also called rapid imaging with refocused echoes (RARE) sequences, by using a joint optimization of refocusing flip angles and a convolutional neural network. METHODS: Simulation and optimization were performed in the MR-zero framework. Variable flip angle train and DenseNet parameters were optimized jointly using the instantaneous transverse magnetization, available in our simulation, at a certain echo time, which serves as ideal blurring-free target. Final optimized sequences were exported for in vivo measurements at a real system (3 T Siemens, PRISMA) using the Pulseq standard. RESULTS: The optimized RARE was able to successfully lower T2 -induced blurring for single-shot RARE sequences in proton density-weighted and T2 -weighted images. In addition to an increased sharpness, the neural network allowed correction of the contrast changes to match the theoretical transversal magnetization. The optimization found flip angle design strategies similar to existing literature, however, visual inspection of the images and evaluation of the respective point spread function demonstrated an improved performance. CONCLUSIONS: This work demonstrates that when variable flip angles and a convolutional neural network are optimized jointly in an end-to-end approach, sequences with more efficient minimization of T2 -induced blurring can be found. This allows faster single- or multi-shot RARE MRI with longer echo trains.


Assuntos
Imageamento por Ressonância Magnética , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Fatores de Tempo , Prótons
8.
Magn Reson Med ; 89(4): 1543-1556, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36377762

RESUMO

PURPOSE: In this work, we investigated the ability of neural networks to rapidly and robustly predict Lorentzian parameters of multi-pool CEST MRI spectra at 7 T with corresponding uncertainty maps to make them quickly and easily available for routine clinical use. METHODS: We developed a deepCEST 7 T approach that generates CEST contrasts from just 1 scan with robustness against B1 inhomogeneities. The input data for a neural feed-forward network consisted of 7 T in vivo uncorrected Z-spectra of a single B1 level, and a B1 map. The 7 T raw data were acquired using a 3D snapshot gradient echo multiple interleaved mode saturation CEST sequence. These inputs were mapped voxel-wise to target data consisting of Lorentzian amplitudes generated conventionally by 5-pool Lorentzian fitting of normalized, denoised, B0 - and B1 -corrected Z-spectra. The deepCEST network was trained with Gaussian negative log-likelihood loss, providing an uncertainty quantification in addition to the Lorentzian amplitudes. RESULTS: The deepCEST 7 T network provides fast and accurate prediction of all Lorentzian parameters also when only a single B1 level is used. The prediction was highly accurate with respect to the Lorentzian fit amplitudes, and both healthy tissues and hyperintensities in tumor areas are predicted with a low uncertainty. In corrupted cases, high uncertainty indicated wrong predictions reliably. CONCLUSION: The proposed deepCEST 7 T approach reduces scan time by 50% to now 6:42 min, but still delivers both B0 - and B1 -corrected homogeneous CEST contrasts along with an uncertainty map, which can increase diagnostic confidence. Multiple accurate 7 T CEST contrasts are delivered within seconds.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias , Humanos , Incerteza , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Meios de Contraste
9.
NMR Biomed ; 36(10): e4955, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37076984

RESUMO

APTw CEST MRI suffers from long preparation times and consequently long acquisition times (~5 min). Recently, a consensus on the preparation module for clinical APTw CEST at 3 T was found in the community, and we present a fast whole-brain APTw CEST MRI sequence following this consensus preparation of pulsed RF irradiation of 2 s duration at 90% RF duty-cycle and a B1,rms of 2 µT. After optimization of the snapshot CEST approach for APTw imaging regarding flip angle, voxel size and frequency offset sampling, we extend it by undersampled GRE acquisition and compressed sensing reconstruction. This allows 2 mm isotropic whole-brain APTw imaging for clinical research at 3 T below 2 min. With this sequence, a fast snapshot APTw imaging method is now available for larger clinical studies of brain tumors.


Assuntos
Neoplasias Encefálicas , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Imagens de Fantasmas , Amidas
10.
NMR Biomed ; 36(6): e4717, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194865

RESUMO

The objective of the current study was to optimize the postprocessing pipeline of 7 T chemical exchange saturation transfer (CEST) imaging for reproducibility and to prove this optimization for the detection of age differences and differences between patients with Parkinson's disease versus normal subjects. The following 7 T CEST MRI experiments were analyzed: repeated measurements of a healthy subject, subjects of two age cohorts (14 older, seven younger subjects), and measurements of 12 patients with Parkinson's disease. A slab-selective, B 1 + -homogeneous parallel transmit protocol was used. The postprocessing, consisting of motion correction, smoothing, B 0 -correction, normalization, denoising, B 1 + -correction and Lorentzian fitting, was optimized regarding the intrasubject and intersubject coefficient of variation (CoV) of the amplitudes of the amide pool and the aliphatic relayed nuclear Overhauser effect (rNOE) pool within the brain. Seven "tricks" for postprocessing accomplished an improvement of the mean voxel CoV of the amide pool and the aliphatic rNOE pool amplitudes of less than 5% and 3%, respectively. These postprocessing steps are: motion correction with interpolation of the motion of low-signal offsets (1) using the amide pool frequency offset image as reference (2), normalization of the Z-spectrum using the outermost saturated measurements (3), B 0 correction of the Z-spectrum with moderate spline smoothing (4), denoising using principal component analysis preserving the 11 highest intensity components (5), B 1 + correction using a linear fit (6) and Lorentzian fitting using the five-pool fit model (7). With the optimized postprocessing pipeline, a significant age effect in the amide pool can be detected. Additionally, for the first time, an aliphatic rNOE contrast between subjects with Parkinson's disease and age-matched healthy controls in the substantia nigra is detected. We propose an optimized postprocessing pipeline for CEST multipool evaluation. It is shown that by the use of these seven "tricks", the reproducibility and, thus, the statistical power of a CEST measurement, can be greatly improved and subtle changes can be detected.


Assuntos
Doença de Parkinson , Humanos , Reprodutibilidade dos Testes , Doença de Parkinson/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo , Amidas
11.
NMR Biomed ; 36(6): e4697, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35067998

RESUMO

Isolated evaluation of multiparametric in vivo chemical exchange saturation transfer (CEST) MRI often requires complex computational processing for both correction of B0 and B1 inhomogeneity and contrast generation. For that, sufficiently densely sampled Z-spectra need to be acquired. The list of acquired frequency offsets largely determines the total CEST acquisition time, while potentially representing redundant information. In this work, a linear projection-based multiparametric CEST evaluation method is introduced that offers fast B0 and B1 inhomogeneity correction, contrast generation and feature selection for CEST data, enabling reduction of the overall measurement time. To that end, CEST data acquired at 7 T in six healthy subjects and in one brain tumor patient were conventionally evaluated by interpolation-based inhomogeneity correction and Lorentzian curve fitting. Linear regression was used to obtain coefficient vectors that directly map uncorrected data to corrected Lorentzian target parameters. L1-regularization was applied to find subsets of the originally acquired CEST measurements that still allow for such a linear projection mapping. The linear projection method allows fast and interpretable mapping from acquired raw data to contrast parameters of interest, generalizing from healthy subject training data to unseen healthy test data and to the tumor patient dataset. The L1-regularization method shows that a fraction of the acquired CEST measurements is sufficient to preserve tissue contrasts, offering up to a 2.8-fold reduction of scan time. Similar observations as for the 7-T data can be made for data from a clinical 3-T scanner. Being a fast and interpretable computation step, the proposed method is complementary to neural networks that have recently been employed for similar purposes. The scan time acceleration offered by the L1-regularization ("CEST-LASSO") constitutes a step towards better applicability of multiparametric CEST protocols in a clinical context.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Redes Neurais de Computação , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
12.
Brain ; 145(11): 4032-4041, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35973034

RESUMO

Phosphorylated Tau181 (pTau181) in CSF and recently in plasma has been associated with Alzheimer's disease. In the absence of amyloidopathy, individuals with increased total Tau levels and/or temporal lobe atrophy experience no or only mild cognitive decline compared with biomarker-negative controls, leading to the proposal to categorize this constellation as suspected non-Alzheimer's disease pathophysiology (SNAP). We investigated whether the characteristics of SNAP also applied to individuals with increased CSF-pTau181 without amyloidopathy. In this long-term observational study, 285 non-demented individuals, including 76 individuals with subjective cognitive impairment and 209 individuals with mild cognitive impairment, were classified based on their CSF levels of pTau181 (T), total Tau (N), amyloid-ß42 (Aß42) and Aß42/Aß40 ratio (A) into A+T+N±, A+T-N±, A-T+N±, and A-T-N-. The longitudinal analysis included 154 subjects with a follow-up of more than 12 months who were followed to a median of 4.6 years (interquartile range = 4.3 years). We employed linear mixed models on psychometric tests and region of interest analysis of structural MRI data. Cognitive decline and hippocampal atrophy rate were significantly higher in A+T+N± compared to A-T+N±, whereas there was no difference between A-T+N± and A-T-N-. Furthermore, there was no significant difference between A-T+N± and controls in dementia risk [hazard ratio 0.3, 95% confidence interval (0.1, 1.9)]. However, A-T+N± and A-T-N- could be distinguished based on their Aß42 and Aß40 levels. Both Aß40 and Aß42 levels were significantly increased in A-T+N± compared to controls. Long term follow-up of A-T+N± individuals revealed no evidence that this biomarker constellation was associated with dementia or more severe hippocampal atrophy rates compared to controls. However, because of the positive association of pTau181 with Aß in the A-T+N± group, a link to the pathophysiology of Alzheimer's disease cannot be excluded in this case. We propose to refer to these individuals in the SNAP group as 'pTau and Aß surge with subtle deterioration' (PASSED). The investigation of the circumstances of simultaneous elevation of pTau and Aß might provide a deeper insight into the process under which Aß becomes pathological.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Proteínas tau , Progressão da Doença , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Atrofia , Biomarcadores , Cognição , Fragmentos de Peptídeos
13.
NMR Biomed ; 35(12): e4806, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35892310

RESUMO

Apparent tissue sodium concentrations (aTSCs) determined by 23 Na brain magnetic resonance imaging (MRI) have the potential to serve as a biomarker in pathologies such as multiple sclerosis (MS). However, the quantification is hindered by the intrinsically low signal-to-noise ratio of 23 Na MRI. The purpose of this study was to improve the accuracy and reliability of quantitative 23 Na brain MRI by implementing a dedicated postprocessing pipeline and to evaluate the applicability of the developed approach for the examination of MS patients. 23 Na brain MRI measurements of 13 healthy volunteers and 17 patients with secondary progressive multiple sclerosis (SPMS) were performed at 7 T using a dual-tuned 23 Na/1 H birdcage coil with a receive-only 32-channel phased array. The aTSC values were determined for normal appearing white matter (NAWM) and normal appearing gray matter (NAGM) in healthy subjects and SPMS patients. Signal intensities were normalized using the mean cerebrospinal fluid (CSF) sodium concentration determined in 37 separate patients receiving a spinal tap for routine diagnostic purposes. Five volunteers underwent MRI examinations three times in a row to assess repeatability. Coefficients of variation (CoVs) were used to quantify the repeatability of the proposed method. aTSC values were compared regarding brain regions and subject cohort using the paired-samples Wilcoxon rank-sum test. Laboratory CSF sodium concentration did not differ significantly between patients without and with MS (p = 0.42). The proposed quantification workflow for 23 Na MRI was highly repeatable with CoVs averaged over all five volunteers of 1.9% ± 0.9% for NAWM and 2.2% ± 1.6% for NAGM. Average NAWM aTSC was significantly higher in patients with SPMS compared with the control group (p = 0.009). Average NAGM aTSC did not differ significantly between healthy volunteers and MS patients (p = 0.98). The proposed postprocessing pipeline shows high repeatability and the results can serve as a baseline for further studies establishing 23 Na brain MRI as a biomarker in diseases such as MS.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Sódio , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Biomarcadores
14.
J Magn Reson Imaging ; 55(1): 140-151, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34259373

RESUMO

BACKGROUND: Sodium enhancement has been demonstrated in multiple sclerosis (MS) lesions. PURPOSE: To investigate sodium MRI with and without an inversion recovery pulse in acute MS lesions in an MS relapse and during recovery. STUDY TYPE: Prospective. SUBJECTS: Twenty-nine relapsing-remitting MS patients with an acute relapse were included. FIELD STRENGTH/SEQUENCE: A 3D density-adapted radial sodium sequence at 3 T using a dual-tuned (23 Na/1 H) head coil. ASSESSMENT: Full-brain images of the tissue sodium concentration (TSC1, n = 29) and a sodium inversion recovery sequence (SIR1, n = 20) at the beginning of the anti-inflammatory therapy and on medium-term follow-up visits (days 27-99, n = 12 [TSC], n = 5 [SIR]) were measured. Regions of interest (RoIs) with contrast enhancement (T1 CE+) and without change in T1-weighted imaging (FL + T1n) were normalized (nTSC and nSIR). To gain insight on the origin of the TSC enhancement at time point 1, it is investigated whether the nTSC enhancement of the lesions is accompanied by a change of the respective nSIR. Potential prognostic value of nSIR1 is examined referring to the nTSC progression. STATISTICAL TESTS: nTSC and nSIR were compared regarding the type of lesion and the time point using a one-way ANOVA. Pearson's correlation coefficient was calculated for nTSC over nSIR and for nTSC1-nTSC2 over nSIR1. A P-value <0.05 was considered statistically significant. RESULTS: At the first measurement, all lesion types showed increased nTSC, while nSIR was decreased in the FL + T1 n and the T1 CE+ lesions in comparison to the normal-appearing white matter. For acute lesions, the difference between nTSC at baseline and nTSC at time point 2 showed a significant correlation with the baseline nSIR. DATA CONCLUSION: At time point 1, nTSC is increased, while nSIR is unchanged or decreased in the lesions. The mean sodium IR signal at baseline correlates with recovery or progression of an acute lesion. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 4.


Assuntos
Esclerose Múltipla , Sódio , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Estudos Prospectivos
15.
Nature ; 540(7633): 428-432, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27919074

RESUMO

The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFß, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.


Assuntos
Senescência Celular , Epistasia Genética , Crescimento e Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Estresse Fisiológico/genética , Envelhecimento , Animais , Senescência Celular/genética , Cromatina/genética , Cromatina/metabolismo , Feminino , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Regeneração/genética
16.
Neuroimage ; 245: 118753, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34852278

RESUMO

Diffusion-relaxation correlation NMR can simultaneously characterize both the microstructure and the local chemical composition of complex samples that contain multiple populations of water. Recent developments on tensor-valued diffusion encoding and Monte Carlo inversion algorithms have made it possible to transfer diffusion-relaxation correlation NMR from small-bore scanners to clinical MRI systems. Initial studies on clinical MRI systems employed 5D D-R1 and D-R2 correlation to characterize healthy brain in vivo. However, these methods are subject to an inherent bias that originates from not including R2 or R1 in the analysis, respectively. This drawback can be remedied by extending the concept to 6D D-R1-R2 correlation. In this work, we present a sparse acquisition protocol that records all data necessary for in vivo 6D D-R1-R2 correlation MRI across 633 individual measurements within 25 min-a time frame comparable to previous lower-dimensional acquisition protocols. The data were processed with a Monte Carlo inversion algorithm to obtain nonparametric 6D D-R1-R2 distributions. We validated the reproducibility of the method in repeated measurements of healthy volunteers. For a post-therapy glioblastoma case featuring cysts, edema, and partially necrotic remains of tumor, we present representative single-voxel 6D distributions, parameter maps, and artificial contrasts over a wide range of diffusion-, R1-, and R2-weightings based on the rich information contained in the D-R1-R2 distributions.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Espectroscopia de Ressonância Magnética , Neuroimagem/métodos , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Voluntários Saudáveis , Humanos , Masculino , Método de Monte Carlo
17.
Neuroimage ; 234: 117986, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33757906

RESUMO

Since the seminal works by Brodmann and contemporaries, it is well-known that different brain regions exhibit unique cytoarchitectonic and myeloarchitectonic features. Transferring the approach of classifying brain tissues - and other tissues - based on their intrinsic features to the realm of magnetic resonance (MR) is a longstanding endeavor. In the 1990s, atlas-based segmentation replaced earlier multi-spectral classification approaches because of the large overlap between the class distributions. Here, we explored the feasibility of performing global brain classification based on intrinsic MR features, and used several technological advances: ultra-high field MRI, q-space trajectory diffusion imaging revealing voxel-intrinsic diffusion properties, chemical exchange saturation transfer and semi-solid magnetization transfer imaging as a marker of myelination and neurochemistry, and current neural network architectures to analyze the data. In particular, we used the raw image data as well to increase the number of input features. We found that a global brain classification of roughly 97 brain regions was feasible with gross classification accuracy of 60%; and that mapping from voxel-intrinsic MR data to the brain region to which the data belongs is possible. This indicates the presence of unique MR signals of different brain regions, similar to their cytoarchitectonic and myeloarchitectonic fingerprints.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Análise de Dados , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Adulto , Idoso , Mapeamento Encefálico/classificação , Feminino , Humanos , Aprendizado de Máquina/classificação , Imageamento por Ressonância Magnética/classificação , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Magn Reson Med ; 85(6): 3140-3153, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33400302

RESUMO

PURPOSE: To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. METHODS: Data sets consisting of B0 , B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. RESULTS: All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. CONCLUSION: UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Algoritmos , Lesões Encefálicas/diagnóstico por imagem , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Adulto Jovem
19.
Magn Reson Med ; 86(1): 346-362, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33634505

RESUMO

PURPOSE: To enable whole-brain quantitative CEST MRI at ultra-high magnetic field strengths (B0 ≥ 7T) within short acquisition times. METHODS: Multiple interleaved mode saturation (MIMOSA) was combined with fast online-customized (FOCUS) parallel transmission (pTx) excitation pulses and B1+ correction to achieve homogenous whole-brain coverage. Examinations of 13 volunteers were performed on a 7T MRI system with 3 different types of pulse sequences: (1) saturation in circular polarized (CP) mode and CP mode readout, (2) MIMOSA and CP readout, and (3) MIMOSA and FOCUS readout. For comparison, the inverse magnetic transfer ratio metric for relayed nuclear Overhauser effect and amide proton transfer were calculated. To investigate the number of required acquisitions for a good B1+ correction, 4 volunteers were measured with 6 different B1 amplitudes. Finally, time point repeatability was investigated for 6 volunteers. RESULTS: MIMOSA FOCUS sequence using B1+ correction, with both single and multiple points, reduced inhomogeneity of the CEST contrasts around the occipital lobe and cerebellum. Results indicate that the most stable inter-subject coefficient of variation was achieved using the MIMOSA FOCUS sequence. Time point repeatability of MIMOSA FOCUS with single-point B1+ correction showed a maximum coefficient of variation below 8% for 3 measurements in a single volunteer. CONCLUSION: A combination of MIMOSA FOCUS with a single-point B1+ correction can be used to achieve quantitative CEST measurements at ultra-high magnetic field strengths. Compared to previous B1+ correction methods, acquisition time can be reduced as additional scans required for B1+ correction can be omitted.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Meios de Contraste , Humanos , Prótons
20.
Magn Reson Med ; 86(4): 1845-1858, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33961312

RESUMO

PURPOSE: As the field of CEST grows, various novel preparation periods using different parameters are being introduced. At the same time, large, multisite clinical studies require clearly defined protocols, especially across different vendors. Here, we propose a CEST definition standard using the open Pulseq format for a shareable, simple, and exact definition of CEST protocols. METHODS: We present the benefits of such a standard in three ways: (1) an open database on GitHub, where fully defined, human-readable CEST protocols can be shared; (2) an open-source Bloch-McConnell simulation to test and optimize CEST preparation periods in silico; and (3) a hybrid MR sequence that plays out the CEST preparation period and can be combined with any existing readout module. RESULTS: The exact definition of the CEST preparation period, in combination with the flexible simulation, leads to a good match between simulations and measurements. The standard allowed finding consensus on three amide proton transfer-weighted protocols that could be compared in healthy subjects and a tumor patient. In addition, we could show coherent multisite results for a sophisticated CEST method, highlighting the benefits regarding protocol sharing and reproducibility. CONCLUSION: With Pulseq-CEST, we provide a straightforward approach to standardize, share, simulate, and measure different CEST preparation schemes, which are inherently completely defined.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Amidas , Simulação por Computador , Humanos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA