Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Respir Res ; 24(1): 167, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349733

RESUMO

BACKGROUND: The origin of αSMA-positive myofibroblasts, key players within organ fibrosis, is still not fully elucidated. Pericytes have been discussed as myofibroblast progenitors in several organs including the lung. METHODS: Using tamoxifen-inducible PDGFRß-tdTomato mice (PDGFRß-CreERT2; R26tdTomato) lineage of lung pericytes was traced. To induce lung fibrosis, a single orotracheal dose of bleomycin was given. Lung tissue was investigated by immunofluorescence analyses, hydroxyproline collagen assay and RT-qPCR. RESULTS: Lineage tracing combined with immunofluorescence for nitric oxide-sensitive guanylyl cyclase (NO-GC) as marker for PDGFRß-positive pericytes allows differentiating two types of αSMA-expressing myofibroblasts in murine pulmonary fibrosis: (1) interstitial myofibroblasts that localize in the alveolar wall, derive from PDGFRß+ pericytes, express NO-GC and produce collagen 1. (2) intra-alveolar myofibroblasts which do not derive from pericytes (but express PDGFRß de novo after injury), are negative for NO-GC, have a large multipolar shape and appear to spread over several alveoli within the injured areas. Moreover, NO-GC expression is reduced during fibrosis, i.e., after pericyte-to-myofibroblast transition. CONCLUSION: In summary, αSMA/PDGFRß-positive myofibroblasts should not be addressed as a homogeneous target cell type within pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Pericitos/metabolismo , Miofibroblastos/metabolismo , Guanilato Ciclase/metabolismo , Fibrose , Colágeno/metabolismo
2.
Anesthesiology ; 136(5): 802-822, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35303056

RESUMO

BACKGROUND: Slick, a sodium-activated potassium channel, has been recently identified in somatosensory pathways, but its functional role is poorly understood. The authors of this study hypothesized that Slick is involved in processing sensations of pain and itch. METHODS: Immunostaining, in situ hybridization, Western blot, and real-time quantitative reverse transcription polymerase chain reaction were used to investigate the expression of Slick in dorsal root ganglia and the spinal cord. Mice lacking Slick globally (Slick-/-) or conditionally in neurons of the spinal dorsal horn (Lbx1-Slick-/-) were assessed in behavioral models. RESULTS: The authors found Slick to be enriched in nociceptive Aδ-fibers and in populations of interneurons in the spinal dorsal horn. Slick-/- mice, but not Lbx1-Slick-/- mice, showed enhanced responses to noxious heat in the hot plate and tail-immersion tests. Both Slick-/- and Lbx1-Slick-/- mice demonstrated prolonged paw licking after capsaicin injection (mean ± SD, 45.6 ± 30.1 s [95% CI, 19.8 to 71.4]; and 13.1 ± 16.1 s [95% CI, 1.8 to 28.0]; P = 0.006 [Slick-/- {n = 8} and wild-type {n = 7}, respectively]), which was paralleled by increased phosphorylation of the neuronal activity marker extracellular signal-regulated kinase in the spinal cord. In the spinal dorsal horn, Slick is colocalized with somatostatin receptor 2 (SSTR2), and intrathecal preadministration of the SSTR2 antagonist CYN-154806 prevented increased capsaicin-induced licking in Slick-/- and Lbx1-Slick-/- mice. Moreover, scratching after intrathecal delivery of the somatostatin analog octreotide was considerably reduced in Slick-/- and Lbx1-Slick-/- mice (Slick-/- [n = 8]: 6.1 ± 6.7 bouts [95% CI, 0.6 to 11.7]; wild-type [n =8]: 47.4 ± 51.1 bouts [95% CI, 4.8 to 90.2]; P = 0.039). CONCLUSIONS: Slick expressed in a subset of sensory neurons modulates heat-induced pain, while Slick expressed in spinal cord interneurons inhibits capsaicin-induced pain but facilitates somatostatin-induced itch.


Assuntos
Capsaicina , Células do Corno Posterior , Animais , Capsaicina/efeitos adversos , Capsaicina/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Dor , Células do Corno Posterior/metabolismo , Canais de Potássio , Prurido/induzido quimicamente , Células Receptoras Sensoriais/metabolismo , Canais de Sódio , Somatostatina/efeitos adversos , Somatostatina/metabolismo , Medula Espinal/metabolismo
3.
Purinergic Signal ; 17(3): 503-514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34313915

RESUMO

Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03-1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.


Assuntos
Agonistas do Receptor A1 de Adenosina/uso terapêutico , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Receptor A1 de Adenosina/biossíntese , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Receptor A1 de Adenosina/genética , Resultado do Tratamento
4.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401689

RESUMO

The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Cálcio/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Canais de Potássio Ativados por Sódio/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriais/fisiologia , Trifosfato de Adenosina/farmacologia , Animais , Escala de Avaliação Comportamental , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Nervos Periféricos/patologia , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Canais de Potássio Ativados por Sódio/genética , Receptores Purinérgicos P2X3/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
FASEB J ; 33(8): 8771-8781, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017817

RESUMO

The alkaloid narciclasine has been characterized extensively as an anticancer compound. Accumulating evidence suggests that narciclasine has anti-inflammatory potential; however, the underlying mechanism remains poorly understood. We hypothesized that narciclasine affects the activation of endothelial cells (ECs), a hallmark of inflammatory processes, which is a prerequisite for leukocyte-EC interaction. Thus, we aimed to investigate narciclasine's action on this process in vivo and to analyze the underlying mechanisms in vitro. In a murine peritonitis model, narciclasine reduced leukocyte infiltration, proinflammatory cytokine expression, and inflammation-associated abdominal pain. Moreover, narciclasine decreased rolling and blocked adhesion and transmigration of leukocytes in vivo. In cultured ECs, narciclasine inhibited the expression of cell adhesion molecules intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin and blocked crucial steps of the NF-κB activation cascade: NF-κB promotor activity, p65 nuclear translocation, inhibitor of κB α (IκBα) phosphorylation and degradation, and IκBα kinase ß and TGF-ß-activated kinase 1 phosphorylation. Interestingly, these effects were based on the narciclasine-triggered loss of TNF receptor 1 (TNFR1). Our study highlights narciclasine as an interesting anti-inflammatory compound that effectively inhibits the interaction of leukocytes with ECs by blocking endothelial activation processes. Most importantly, we showed that the observed inhibitory action of narciclasine on TNF-triggered signaling pathways is based on the loss of TNFR1.-Stark, A., Schwenk, R., Wack, G., Zuchtriegel, G., Hatemler, M. G., Bräutigam, J., Schmidtko, A., Reichel, C. A., Bischoff, I., Fürst, R. Narciclasine exerts anti-inflammatory actions by blocking leukocyte-endothelial cell interactions and down-regulation of the endothelial TNF receptor 1.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Anti-Inflamatórios/farmacologia , Adesão Celular , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fenantridinas/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Movimento Celular , Células Cultivadas , Regulação para Baixo , Selectina E/genética , Selectina E/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Células THP-1 , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
6.
Int J Mol Sci ; 19(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087260

RESUMO

Impaired NO-cGMP signaling has been linked to several neurological disorders. NO-sensitive guanylyl cyclase (NO-GC), of which two isoforms-NO-GC1 and NO-GC2-are known, represents a promising drug target to increase cGMP in the brain. Drug-like small molecules have been discovered that work synergistically with NO to stimulate NO-GC activity. However, the effects of NO-GC stimulators in the brain are not well understood. In the present study, we used Förster/fluorescence resonance energy transfer (FRET)-based real-time imaging of cGMP in acute brain slices and primary neurons of cGMP sensor mice to comparatively assess the activity of two structurally different NO-GC stimulators, IWP-051 and BAY 41-2272, in the cerebellum, striatum and hippocampus. BAY 41-2272 potentiated an elevation of cGMP induced by the NO donor DEA/NO in all tested brain regions. Interestingly, IWP-051 potentiated DEA/NO-induced cGMP increases in the cerebellum and striatum, but not in the hippocampal CA1 area or primary hippocampal neurons. The brain-region-selective activity of IWP-051 suggested that it might act in a NO-GC isoform-selective manner. Results of mRNA in situ hybridization indicated that the cerebellum and striatum express NO-GC1 and NO-GC2, while the hippocampal CA1 area expresses mainly NO-GC2. IWP-051-potentiated DEA/NO-induced cGMP signals in the striatum of NO-GC2 knockout mice but was ineffective in the striatum of NO-GC1 knockout mice. These results indicate that IWP-051 preferentially stimulates NO-GC1 signaling in brain slices. Interestingly, no evidence for an isoform-specific effect of IWP-051 was observed when the cGMP-forming activity of whole brain homogenates was measured. This apparent discrepancy suggests that the method and conditions of cGMP measurement can influence results with NO-GC stimulators. Nevertheless, it is clear that NO-GC stimulators enhance cGMP signaling in the brain and should be further developed for the treatment of neurological diseases.


Assuntos
Encéfalo/metabolismo , GMP Cíclico/análise , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Animais , Células Cultivadas , GMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Camundongos Knockout , Neuroimagem/métodos , Neurônios , Células de Purkinje
7.
J Neurosci ; 35(3): 1125-35, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25609627

RESUMO

Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain.


Assuntos
Hiperalgesia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/metabolismo , Canais de Potássio/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Temperatura Alta , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neuralgia/fisiopatologia , Medição da Dor , Limiar da Dor/fisiologia , Física , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio
8.
Handb Exp Pharmacol ; 227: 103-17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25846616

RESUMO

A large body of evidence indicates that nitric oxide (NO) plays an important role in the processing of persistent inflammatory and neuropathic pain in the spinal cord. Several animal studies revealed that inhibition or knockout of NO synthesis ameliorates persistent pain. However, spinal delivery of NO donors caused dual pronociceptive and antinociceptive effects, pointing to multiple downstream signaling mechanisms of NO. This review summarizes the localization and function of NO-dependent signaling mechanisms in the spinal cord, taking account of the recent progress made in this field.


Assuntos
Óxido Nítrico/fisiologia , Dor/fisiopatologia , Medula Espinal/fisiologia , Animais , GMP Cíclico/fisiologia , Humanos , Ácido Peroxinitroso/biossíntese , Transdução de Sinais
9.
Anesthesiology ; 121(2): 372-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24758774

RESUMO

BACKGROUND: Phosphodiesterase 2A (PDE2A) is an evolutionarily conserved enzyme that catalyzes the degradation of the cyclic nucleotides, cyclic adenosine monophosphate, and/or cyclic guanosine monophosphate. Recent studies reported the expression of PDE2A in the dorsal horn of the spinal cord, pointing to a potential contribution to the processing of pain. However, the functions of PDE2A in spinal pain processing in vivo remained elusive. METHODS: Immunohistochemistry, laser microdissection, and quantitative real-time reverse transcription polymerase chain reaction experiments were performed to characterize the localization and regulation of PDE2A protein and messenger RNA in the mouse spinal cord. Effects of the selective PDE2A inhibitor, BAY 60-7550 (Cayman Chemical, Ann Arbor, MI), in animal models of inflammatory pain (n = 6 to 10), neuropathic pain (n = 5 to 6), and after intrathecal injection of cyclic nucleotides (n = 6 to 8) were examined. Also, cyclic adenosine monophosphate and cyclic guanosine monophosphate levels in spinal cord tissues were measured by liquid chromatography tandem mass spectrometry. RESULTS: The authors here demonstrate that PDE2A is distinctly expressed in neurons of the superficial dorsal horn of the spinal cord, and that its spinal expression is upregulated in response to hind paw inflammation. Administration of the selective PDE2A inhibitor, BAY 60-7550, increased the nociceptive behavior of mice in animal models of inflammatory pain. Moreover, BAY 60-7550 increased the pain hypersensitivity induced by intrathecal delivery of cyclic adenosine monophosphate, but not of cyclic guanosine monophosphate, and it increased the cyclic adenosine monophosphate levels in spinal cord tissues. CONCLUSION: Our findings indicate that PDE2A contributes to the processing of inflammatory pain in the spinal cord.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/fisiologia , Inflamação/enzimologia , Inflamação/fisiopatologia , Dor/enzimologia , Dor/fisiopatologia , Medula Espinal/enzimologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/biossíntese , Hipersensibilidade a Drogas/fisiopatologia , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Imuno-Histoquímica , Inflamação/complicações , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdissecção , Neuralgia/enzimologia , Neuralgia/fisiopatologia , Neuralgia/psicologia , Dor/etiologia , Medição da Dor , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/farmacologia , Células do Corno Posterior/enzimologia , Reação em Cadeia da Polimerase em Tempo Real , Triazinas/administração & dosagem , Triazinas/farmacologia , Regulação para Cima/genética , Regulação para Cima/fisiologia , Zimosan
10.
Biomed Pharmacother ; 176: 116907, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865849

RESUMO

The plant alkaloid homoharringtonine (HHT) is a Food and Drug Administration (FDA)-approved drug for the treatment of hematologic malignancies. In addition to its well-established antitumor activity, accumulating evidence attributes anti-inflammatory effects to HHT, which have mainly been studied in leukocytes to date. However, a potential influence of HHT on inflammatory activation processes in endothelial cells, which are a key feature of inflammation and a prerequisite for the leukocyte-endothelial cell interaction and leukocyte extravasation, remains poorly understood. In this study, the anti-inflammatory potential of HHT and its derivative harringtonine (HT) on the TNF-induced leukocyte-endothelial cell interaction was assessed, and the underlying mechanistic basis of these effects was elucidated. HHT affected inflammation in vivo in a murine peritonitis model by reducing leukocyte infiltration and proinflammatory cytokine expression as well as ameliorating abdominal pain behavior. In vitro, HT and HHT impaired the leukocyte-endothelial cell interaction by decreasing the expression of the endothelial cell adhesion molecules intracellular adhesion molecule -1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). This effect was mediated by a bipartite mechanism. While HHT did not affect the prominent TNF-induced pro-inflammatory NF-ĸB signaling cascade, the compound downregulated the VCAM1 mRNA expression in an IRF-1-dependent manner and diminished active ICAM1 mRNA translation as determined by polysome profiling. This study highlights HHT as an anti-inflammatory compound that efficiently hampers the leukocyte-endothelial cell interaction by targeting endothelial activation processes.


Assuntos
Regulação para Baixo , Mepesuccinato de Omacetaxina , Inflamação , Fator Regulador 1 de Interferon , RNA Mensageiro , Molécula 1 de Adesão de Célula Vascular , Animais , Regulação para Baixo/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Inflamação/tratamento farmacológico , Inflamação/patologia , Inflamação/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Humanos , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Camundongos , Mepesuccinato de Omacetaxina/farmacologia , Masculino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Anti-Inflamatórios/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Camundongos Endogâmicos C57BL , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo
11.
Adv Sci (Weinh) ; 11(15): e2307237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350720

RESUMO

Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.


Assuntos
Canais de Potássio , Prurido , Animais , Camundongos , Antipruriginosos/uso terapêutico , Histamina/metabolismo , Loxapina/uso terapêutico , Canais de Potássio/metabolismo , Prurido/tratamento farmacológico , Prurido/metabolismo
12.
J Neurosci ; 32(30): 10136-45, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22836249

RESUMO

Reactive oxygen species (ROS) contribute to sensitization of pain pathways during neuropathic pain, but little is known about the primary sources of ROS production and how ROS mediate pain sensitization. Here, we show that the NADPH oxidase isoform Nox4, a major ROS source in somatic cells, is expressed in a subset of nonpeptidergic nociceptors and myelinated dorsal root ganglia neurons. Mice lacking Nox4 demonstrated a substantially reduced late-phase neuropathic pain behavior after peripheral nerve injury. The loss of Nox4 markedly attenuated injury-induced ROS production and dysmyelination processes of peripheral nerves. Moreover, persisting neuropathic pain behavior was inhibited after tamoxifen-induced deletion of Nox4 in adult transgenic mice. Our results suggest that Nox4 essentially contributes to nociceptive processing in neuropathic pain states. Accordingly, inhibition of Nox4 may provide a novel therapeutic modality for the treatment of neuropathic pain.


Assuntos
NADPH Oxidases/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo , Animais , Comportamento Animal/fisiologia , Contagem de Células , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Atividade Motora/fisiologia , NADPH Oxidase 4 , NADPH Oxidases/genética , Nociceptores/metabolismo , Medição da Dor , Espécies Reativas de Oxigênio/metabolismo
13.
J Neurosci ; 32(18): 6364-72, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22553041

RESUMO

Epoxyeicosatrienoic acids (EETs) are cytochrome P450-epoxygenase-derived metabolites of arachidonic acid that act as endogenous signaling molecules in multiple biological systems. Here we have investigated the specific contribution of 5,6-EET to transient receptor potential (TRP) channel activation in nociceptor neurons and its consequence for nociceptive processing. We found that, during capsaicin-induced nociception, 5,6-EET levels increased in dorsal root ganglia (DRGs) and the dorsal spinal cord, and 5,6-EET is released from activated sensory neurons in vitro. 5,6-EET potently induced a calcium flux (100 nm) in cultured DRG neurons that was completely abolished when TRPA1 was deleted or inhibited. In spinal cord slices, 5,6-EET dose dependently enhanced the frequency, but not the amplitude, of spontaneous EPSCs (sEPSCs) in lamina II neurons that also responded to mustard oil (allyl isothiocyanate), indicating a presynaptic action. Furthermore, 5,6-EET-induced enhancement of sEPSC frequency was abolished in TRPA1-null mice, suggesting that 5,6-EET presynaptically facilitated spinal cord synaptic transmission by TRPA1. Finally, in vivo intrathecal injection of 5,6-EET caused mechanical allodynia in wild-type but not TRPA1-null mice. We conclude that 5,6-EET is synthesized on the acute activation of nociceptors and can produce mechanical hypersensitivity via TRPA1 at central afferent terminals in the spinal cord.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Potenciais de Ação/fisiologia , Vias Aferentes/fisiopatologia , Hiperalgesia/fisiopatologia , Células Receptoras Sensoriais/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
J Immunol ; 187(5): 2617-25, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21813779

RESUMO

Inhibitor-κB kinase ε (IKKε) was only recently identified as an enzyme with high homology to the classical I-κB kinase subunits, IKKα and IKKß. Despite this similarity, it is mainly discussed as a repressor of viral infections by modulating type I IFNs. However, in vitro studies also showed that IKKε plays a role in the regulation of NF-κB activity, but the distinct mechanisms of IKKε-mediated NF-κB activation are not clear. Given the paramount role of NF-κB in inflammation, we investigated the regulation and function of IKKε in models of inflammatory hyperalgesia in mice. We found that IKKε was abundantly expressed in nociceptive neurons in the spinal cord and in dorsal root ganglia. IKKε mRNA and protein levels rapidly increased in spinal cord and dorsal root ganglia during hind paw inflammation evoked by injection of zymosan or formalin. IKKε knockout mice showed normal nociceptive responses to acute heat or mechanical stimulation. However, in inflammatory pain models, IKKε-deficient mice exhibited a significantly reduced nociceptive behavior in comparison with wild type mice, indicating that IKKε contributed to the development of inflammatory hyperalgesia. Antinociceptive effects were associated with reduced activation of NF-κB and attenuated NF-κB-dependent induction of cyclooxygenase-2, inducible NO synthase, and metalloproteinase-9. In contrast, IRF-3, which is an important IKKε target in viral infections, was not regulated after inflammatory nociceptive stimulation. Therefore, we concluded that IKKε modulates inflammatory nociceptive sensitivity by activation of NF-κB-dependent gene transcription and may be useful as a therapeutic target in the treatment of inflammatory pain.


Assuntos
Hiperalgesia/enzimologia , Quinase I-kappa B/metabolismo , Neurônios/metabolismo , Animais , Western Blotting , Citocinas/biossíntese , Ensaio de Imunoadsorção Enzimática , Gânglios Espinais/metabolismo , Hiperalgesia/etiologia , Hibridização In Situ , Inflamação/complicações , Inflamação/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Medula Espinal/metabolismo
15.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1669-1686, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37079081

RESUMO

Increasing cGMP is a unique therapeutic principle, and drugs inhibiting cGMP-degrading enzymes or stimulating cGMP production are approved for the treatment of various diseases such as erectile dysfunction, coronary artery disease, pulmonary hypertension, chronic heart failure, irritable bowel syndrome, or achondroplasia. In addition, cGMP-increasing therapies are preclinically profiled or in clinical development for quite a broad set of additional indications, e.g., neurodegenerative diseases or different forms of dementias, bone formation disorders, underlining the pivotal role of cGMP signaling pathways. The fundamental understanding of the signaling mediated by nitric oxide-sensitive (soluble) guanylyl cyclase and membrane-associated receptor (particulate) guanylyl cyclase at the molecular and cellular levels, as well as in vivo, especially in disease models, is a key prerequisite to fully exploit treatment opportunities and potential risks that could be associated with an excessive increase in cGMP. Furthermore, human genetic data and the clinical effects of cGMP-increasing drugs allow back-translation into basic research to further learn about signaling and treatment opportunities. The biannual international cGMP conference, launched nearly 20 years ago, brings all these aspects together as an established and important forum for all topics from basic science to clinical research and pivotal clinical trials. This review summarizes the contributions to the "10th cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications," which was held in Augsburg in 2022 but will also provide an overview of recent key achievements and activities in the field of cGMP research.


Assuntos
GMP Cíclico , Guanilato Ciclase , Masculino , Humanos , Guanilato Ciclase/metabolismo , Guanilil Ciclase Solúvel/metabolismo , GMP Cíclico/metabolismo , Transdução de Sinais , Pesquisa , Óxido Nítrico/metabolismo
16.
J Neurosci ; 31(31): 11184-92, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21813679

RESUMO

A large body of evidence indicates that nitric oxide (NO) and cGMP contribute to central sensitization of pain pathways during inflammatory pain. Here, we investigated the distribution of cyclic nucleotide-gated (CNG) channels in the spinal cord, and identified the CNG channel subunit CNGA3 as a putative cGMP target in nociceptive processing. In situ hybridization revealed that CNGA3 is localized to inhibitory neurons of the dorsal horn of the spinal cord, whereas its distribution in dorsal root ganglia is restricted to non-neuronal cells. CNGA3 expression is upregulated in the superficial dorsal horn of the mouse spinal cord and in dorsal root ganglia following hindpaw inflammation evoked by zymosan. Mice lacking CNGA3 (CNGA3(-/-) mice) exhibited an increased nociceptive behavior in models of inflammatory pain, whereas their behavior in models of acute or neuropathic pain was normal. Moreover, CNGA3(-/-) mice developed an exaggerated pain hypersensitivity induced by intrathecal administration of cGMP analogs or NO donors. Our results provide evidence that CNGA3 contributes in an inhibitory manner to the central sensitization of pain pathways during inflammatory pain as a target of NO/cGMP signaling.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Inflamação/complicações , Óxido Nítrico/metabolismo , Dor/etiologia , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Análise de Variância , Animais , GMP Cíclico/efeitos adversos , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/deficiência , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdissecção , Naftalenos/metabolismo , Peptídeos Natriuréticos/efeitos adversos , Dor/tratamento farmacológico , Dor/patologia , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Percepção da Dor/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/patologia , Estimulação Física/efeitos adversos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estatmina/metabolismo , Estatísticas não Paramétricas , Tionucleotídeos/farmacologia , Triazenos/farmacologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
17.
Antioxidants (Basel) ; 11(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35740059

RESUMO

Inflammation or injury to the somatosensory nervous system may result in chronic pain conditions, which affect millions of people and often cause major health problems. Emerging lines of evidence indicate that reactive oxygen species (ROS), such as superoxide anion or hydrogen peroxide, are produced in the nociceptive system during chronic inflammatory and neuropathic pain and act as specific signaling molecules in pain processing. Among potential ROS sources in the somatosensory system are NADPH oxidases, a group of electron-transporting transmembrane enzymes whose sole function seems to be the generation of ROS. Interestingly, the expression and relevant function of the Nox family members Nox1, Nox2, and Nox4 in various cells of the nociceptive system have been demonstrated. Studies using knockout mice or specific knockdown of these isoforms indicate that Nox1, Nox2, and Nox4 specifically contribute to distinct signaling pathways in chronic inflammatory and/or neuropathic pain states. As selective Nox inhibitors are currently being developed and investigated in various physiological and pathophysiological settings, targeting Nox1, Nox2, and/or Nox4 could be a novel strategy for the treatment of chronic pain. Here, we summarize the distinct roles of Nox1, Nox2, and Nox4 in inflammatory and neuropathic processing and discuss the effectiveness of currently available Nox inhibitors in the treatment of chronic pain conditions.

18.
Br J Pharmacol ; 179(11): 2361-2377, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939841

RESUMO

Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Assuntos
GMP Cíclico , Gânglios Espinais , Axônios/metabolismo , GMP Cíclico/metabolismo , Feminino , Gânglios Espinais/metabolismo , Humanos , Gravidez , Células Receptoras Sensoriais/metabolismo , Medula Espinal/metabolismo
19.
Cells ; 11(10)2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35626730

RESUMO

The transient receptor potential (TRP) ankyrin type 1 (TRPA1) channel is highly expressed in a subset of sensory neurons where it acts as an essential detector of painful stimuli. However, the mechanisms that control the activity of sensory neurons upon TRPA1 activation remain poorly understood. Here, using in situ hybridization and immunostaining, we found TRPA1 to be extensively co-localized with the potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) in sensory neurons. Mice lacking Slack globally (Slack-/-) or conditionally in sensory neurons (SNS-Slack-/-) demonstrated increased pain behavior after intraplantar injection of the TRPA1 activator allyl isothiocyanate. By contrast, pain behavior induced by the TRP vanilloid 1 (TRPV1) activator capsaicin was normal in Slack-deficient mice. Patch-clamp recordings in sensory neurons and in a HEK cell line transfected with TRPA1 and Slack revealed that Slack-dependent potassium currents (IKS) are modulated in a TRPA1-dependent manner. Taken together, our findings highlight Slack as a modulator of TRPA1-mediated, but not TRPV1-mediated, activation of sensory neurons.


Assuntos
Nociceptividade , Canais de Potencial de Receptor Transitório , Animais , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dor/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio Ativados por Sódio , Células Receptoras Sensoriais/metabolismo , Canal de Cátion TRPA1/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
20.
Lancet ; 375(9725): 1569-77, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20413151

RESUMO

Pharmacological management of severe chronic pain is difficult to achieve with currently available analgesic drugs, and remains a large unmet therapeutic need. The synthetic peptide ziconotide has been approved by the US Food and Drug Administration and the European Medicines Agency for intrathecal treatment of patients with severe chronic pain that is refractory to other treatment modalities. Ziconotide is the first member in the new drug class of selective N-type voltage-sensitive calcium-channel blockers. The ziconotide-induced blockade of N-type calcium channels in the spinal cord inhibits release of pain-relevant neurotransmitters from central terminals of primary afferent neurons. By this mechanism, ziconotide can effectively reduce pain. However, ziconotide has a narrow therapeutic window because of substantial CNS side-effects, and thus treatment with ziconotide is appropriate for only a small subset of patients with severe chronic pain. We provide an overview of the benefits and limitations of intrathecal ziconotide treatment and review potential future developments in this new drug class.


Assuntos
Analgésicos não Narcóticos/farmacologia , Analgésicos não Narcóticos/uso terapêutico , Dor Intratável/tratamento farmacológico , ômega-Conotoxinas/farmacologia , ômega-Conotoxinas/uso terapêutico , Cateterismo/efeitos adversos , Creatina Quinase/sangue , Interações Medicamentosas , Meia-Vida , Humanos , Injeções Espinhais/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA