Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Exp Bot ; 74(12): 3630-3650, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37010230

RESUMO

EARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be essential for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for 10 developmental and yield-related traits. We determine novel exotic ELF3 alleles and show that HIF lines, carrying the exotic ELF3 allele, accelerated plant development compared with the cultivated ELF3 allele, depending on the genetic background. Remarkably, the most extreme effects on phenology could be attributed to one exotic ELF3 allele differing from the cultivated Barke ELF3 allele in only one single nucleotide polymorphism (SNP). This SNP causes an amino acid substitution (W669G), which as predicted has an impact on the protein structure of ELF3. Consequently, it may affect phase separation behaviour and nano-compartment formation of ELF3 and, potentially, also its local cellular interactions causing significant trait differences between HIF sister lines.


Assuntos
Hordeum , Locos de Características Quantitativas , Mapeamento Cromossômico , Hordeum/genética , Alelos , Melhoramento Vegetal , Desenvolvimento Vegetal
2.
Nature ; 544(7651): 427-433, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28447635

RESUMO

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Núcleo Celular/genética , Centrômero/genética , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Variação Genética , Genômica , Haplótipos/genética , Meiose/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sementes/genética
3.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232362

RESUMO

Increased salinity is one of the major consequences of climatic change affecting global crop production. The early stages in the barley (Hordeum vulgare L.) life cycle are considered the most critical phases due to their contributions to final crop yield. Particularly, the germination and seedling development are sensitive to numerous environmental stresses, especially soil salinity. In this study, we aimed to identify SNP markers linked with germination and seedling development at 150 mM NaCl as a salinity treatment. We performed a genome-wide association study (GWAS) using a panel of 208 intermedium-spike barley (H. vulgare convar. intermedium (Körn.) Mansf.) accessions and their genotype data (i.e., 10,323 SNPs) using the genome reference sequence of "Morex". The phenotypic results showed that the 150 mM NaCl salinity treatment significantly reduced all recorded germination and seedling-related traits compared to the control treatment. Furthermore, six accessions (HOR 11747, HOR 11718, HOR 11640, HOR 11256, HOR 11275 and HOR 11291) were identified as the most salinity tolerant from the intermedium-spike barley collection. GWAS analysis indicated that a total of 38 highly significantly associated SNP markers under control and/or salinity traits were identified. Of these, two SNP markers on chromosome (chr) 1H, two on chr 3H, and one on chr 4H were significantly linked to seedling fresh and dry weight under salinity stress treatment. In addition, two SNP markers on chr 7H were also significantly associated with seedling fresh and dry weight but under control condition. Under salinity stress, one SNP marker on chr 1H, 5H and 7H were detected for more than one phenotypic trait. We found that in most of the accessions exhibiting the highest salinity tolerance, most of the salinity-related QTLs were presented. These results form the basis for detailed studies, leading to improved salt tolerance breeding programs in barley.


Assuntos
Hordeum , Estudo de Associação Genômica Ampla , Germinação/genética , Hordeum/genética , Melhoramento Vegetal , Tolerância ao Sal/genética , Plântula/genética , Cloreto de Sódio/farmacologia , Solo
4.
Plant J ; 102(3): 631-642, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31823436

RESUMO

Many plant genomes display high levels of repetitive sequences. The assembly of these complex genomes using short high-throughput sequence reads is still a challenging task. Underestimation or disregard of repeat complexity in these datasets can easily misguide downstream analysis. Detection of repetitive regions by k-mer counting methods has proved to be reliable. Easy-to-use applications utilizing k-mer counting are in high demand, especially in the domain of plants. We present Kmasker plants, a tool that uses k-mer count information as an assistant throughout the analytical workflow of genome data that is provided as a command-line and web-based solution. Beside its core competence to screen and mask repetitive sequences, we have integrated features that enable comparative studies between different cultivars or closely related species and methods that estimate target specificity of guide RNAs for application of site-directed mutagenesis using Cas9 endonuclease. In addition, we have set up a web service for Kmasker plants that maintains pre-computed indices for 10 of the economically most important cultivated plants. Source code for Kmasker plants has been made publically available at https://github.com/tschmutzer/kmasker. The web service is accessible at https://kmasker.ipk-gatersleben.de.


Assuntos
Genoma de Planta/genética , Algoritmos , Edição de Genes , Genômica , RNA Guia de Cinetoplastídeos/genética , Análise de Sequência de DNA , Software
5.
New Phytol ; 228(6): 1852-1863, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32659029

RESUMO

Meiotic recombination rates vary considerably between species, populations and individuals. The genetic exchange between homologous chromosomes plays a major role in evolution by breaking linkage between advantageous and deleterious alleles in the case of introgressions. Identifying recombination rate modifiers is thus of both fundamental and practical interest to understand and utilize variation in meiotic recombination rates. We investigated recombination rate variation in a large intraspecific hybrid population (named HEB-25) derived from a cross between domesticated barley and 25 wild barley accessions. We observed quantitative variation in total crossover number with a maximum of a 1.4-fold difference between subpopulations and increased recombination rates across pericentromeric regions. The meiosis-specific α-kleisin cohesin subunit REC8 was identified as a candidate gene influencing crossover number and patterning. Furthermore, we quantified wild barley introgression patterns and revealed how local and genome-wide recombination rate variation shapes patterns of introgression. The identification of allelic variation in REC8 in combination with the observed changes in crossover patterning suggest a difference in how chromatin loops are tethered to the chromosome axis, resulting in reduced crossover suppression across pericentromeric regions. Local and genome-wide recombination rate variation is shaping patterns of introgressions and thereby directly influences the consequences of linkage drag.


Assuntos
Hordeum , Ligação Genética , Genoma , Hordeum/genética , Meiose/genética , Recombinação Genética/genética
6.
Plant J ; 89(5): 853-869, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888547

RESUMO

We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.


Assuntos
Cromossomos de Plantas/genética , Secale/genética , DNA de Plantas/genética , Genoma de Planta/genética , Genômica , Genótipo , Sintenia
7.
BMC Genomics ; 18(1): 273, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28372538

RESUMO

BACKGROUND: The economically important Ergot fungus Claviceps purpurea is an interesting biotrophic model system because of its strict organ specificity (grass ovaries) and the lack of any detectable plant defense reactions. Though several virulence factors were identified, the exact infection mechanisms are unknown, e.g. how the fungus masks its attack and if the host detects the infection at all. RESULTS: We present a first dual transcriptome analysis using an RNA-Seq approach. We studied both, fungal and plant gene expression in young ovaries infected by the wild-type and two virulence-attenuated mutants. We can show that the plant recognizes the fungus, since defense related genes are upregulated, especially several phytohormone genes. We present a survey of in planta expressed fungal genes, among them several confirmed virulence genes. Interestingly, the set of most highly expressed genes includes a high proportion of genes encoding putative effectors, small secreted proteins which might be involved in masking the fungal attack or interfering with host defense reactions. As known from several other phytopathogens, the C. purpurea genome contains more than 400 of such genes, many of them clustered and probably highly redundant. Since the lack of effective defense reactions in spite of recognition of the fungus could very well be achieved by effectors, we started a functional analysis of some of the most highly expressed candidates. However, the redundancy of the system made the identification of a drastic effect of a single gene most unlikely. We can show that at least one candidate accumulates in the plant apoplast. Deletion of some candidates led to a reduced virulence of C. purpurea on rye, indicating a role of the respective proteins during the infection process. CONCLUSIONS: We show for the first time that- despite the absence of effective plant defense reactions- the biotrophic pathogen C. purpurea is detected by its host. This points to a role of effectors in modulation of the effective plant response. Indeed, several putative effector genes are among the highest expressed genes in planta.


Assuntos
Claviceps/genética , Flores/microbiologia , Doenças das Plantas/microbiologia , Secale/microbiologia , Claviceps/metabolismo , Resistência à Doença/genética , Flores/genética , Flores/metabolismo , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Fúngicos , Genes de Plantas , Interações Hospedeiro-Patógeno , Secale/genética , Secale/metabolismo , Transcriptoma , Fatores de Virulência/genética
8.
Plant Physiol ; 171(2): 1113-27, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208226

RESUMO

Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected.


Assuntos
Proteínas de Arabidopsis/química , Genes Homeobox , Genes de Plantas , Hordeum/anatomia & histologia , Hordeum/genética , Inflorescência/anatomia & histologia , Homologia de Sequência de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Pareamento de Bases/genética , Mapeamento Cromossômico , Clonagem Molecular , Ecótipo , Variação Genética , Anotação de Sequência Molecular , Mutação , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Recombinação Genética/genética , Análise de Sequência de DNA , Deleção de Sequência
9.
Plant J ; 84(2): 385-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26332657

RESUMO

Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single-copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination-poor region is preferentially marked by a heterochromatin-typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin-typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.


Assuntos
Cromossomos de Plantas/genética , Hordeum/genética , Mapeamento Cromossômico
10.
Plant Biotechnol J ; 14(7): 1511-22, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26801048

RESUMO

Hierarchical shotgun sequencing remains the method of choice for assembling high-quality reference sequences of complex plant genomes. The efficient exploitation of current high-throughput technologies and powerful computational facilities for large-insert clone sequencing necessitates the sequencing and assembly of a large number of clones in parallel. We developed a multiplexed pipeline for shotgun sequencing and assembling individual bacterial artificial chromosomes (BACs) using the Illumina sequencing platform. We illustrate our approach by sequencing 668 barley BACs (Hordeum vulgare L.) in a single Illumina HiSeq 2000 lane. Using a newly designed parallelized computational pipeline, we obtained sequence assemblies of individual BACs that consist, on average, of eight sequence scaffolds and represent >98% of the genomic inserts. Our BAC assemblies are clearly superior to a whole-genome shotgun assembly regarding contiguity, completeness and the representation of the gene space. Our methods may be employed to rapidly obtain high-quality assemblies of a large number of clones to assemble map-based reference sequences of plant and animal species with complex genomes by sequencing along a minimum tiling path.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genoma de Planta , Hordeum/genética , Análise de Sequência de DNA/métodos , Biotecnologia/métodos
11.
Plant Cell ; 25(10): 3685-98, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24104565

RESUMO

Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (~8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This was achieved by high-throughput transcript mapping, chromosome survey sequencing, and integration of conserved synteny information of three sequenced model grass genomes (Brachypodium distachyon, rice [Oryza sativa], and sorghum [Sorghum bicolor]). This enabled a genome-wide high-density comparative analysis of rye/barley/model grass genome synteny. Seventeen conserved syntenic linkage blocks making up the rye and barley genomes were defined in comparison to model grass genomes. Six major translocations shaped the modern rye genome in comparison to a putative Triticeae ancestral genome. Strikingly dissimilar conserved syntenic gene content, gene sequence diversity signatures, and phylogenetic networks were found for individual rye syntenic blocks. This indicates that introgressive hybridizations (diploid or polyploidy hybrid speciation) and/or a series of whole-genome or chromosome duplications played a role in rye speciation and genome evolution.


Assuntos
Evolução Molecular , Genoma de Planta , Secale/genética , Sintenia , Brachypodium/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Sequência Conservada , DNA de Plantas/genética , Ordem dos Genes , Especiação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Hordeum/genética , Modelos Genéticos , Oryza/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
12.
Plant Physiol ; 164(1): 412-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24243933

RESUMO

Barley (Hordeum vulgare) is an important cereal crop and a model species for Triticeae genomics. To lay the foundation for hierarchical map-based sequencing, a genome-wide physical map of its large and complex 5.1 billion-bp genome was constructed by high-information content fingerprinting of almost 600,000 bacterial artificial chromosomes representing 14-fold haploid genome coverage. The resultant physical map comprises 9,265 contigs with a cumulative size of 4.9 Gb representing 96% of the physical length of the barley genome. The reliability of the map was verified through extensive genetic marker information and the analysis of topological networks of clone overlaps. A minimum tiling path of 66,772 minimally overlapping clones was defined that will serve as a template for hierarchical clone-by-clone map-based shotgun sequencing. We integrated whole-genome shotgun sequence data from the individuals of two mapping populations with published bacterial artificial chromosome survey sequence information to genetically anchor the physical map. This novel approach in combination with the comprehensive whole-genome shotgun sequence data sets allowed us to independently validate and improve a previously reported physical and genetic framework. The resources developed in this study will underpin fine-mapping and cloning of agronomically important genes and the assembly of a draft genome sequence.


Assuntos
Hordeum/genética , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , Reprodutibilidade dos Testes , Análise de Sequência de DNA
13.
Proc Natl Acad Sci U S A ; 109(33): 13343-6, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22847450

RESUMO

Supernumerary B chromosomes are optional additions to the basic set of A chromosomes, and occur in all eukaryotic groups. They differ from the basic complement in morphology, pairing behavior, and inheritance and are not required for normal growth and development. The current view is that B chromosomes are parasitic elements comparable to selfish DNA, like transposons. In contrast to transposons, they are autonomously inherited independent of the host genome and have their own mechanisms of mitotic or meiotic drive. Although B chromosomes were first described a century ago, little is known about their origin and molecular makeup. The widely accepted view is that they are derived from fragments of A chromosomes and/or generated in response to interspecific hybridization. Through next-generation sequencing of sorted A and B chromosomes, we show that B chromosomes of rye are rich in gene-derived sequences, allowing us to trace their origin to fragments of A chromosomes, with the largest parts corresponding to rye chromosomes 3R and 7R. Compared with A chromosomes, B chromosomes were also found to accumulate large amounts of specific repeats and insertions of organellar DNA. The origin of rye B chromosomes occurred an estimated ∼1.1-1.3 Mya, overlapping in time with the onset of the genus Secale (1.7 Mya). We propose a comprehensive model of B chromosome evolution, including its origin by recombination of several A chromosomes followed by capturing of additional A-derived and organellar sequences and amplification of B-specific repeats.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta/genética , Mosaicismo , Organelas/genética , Secale/genética , Sequência de Bases , Centrômero/genética , Genes de Plantas/genética , Hibridização in Situ Fluorescente , Metáfase/genética , Modelos Genéticos , Retroelementos/genética
14.
Cytogenet Genome Res ; 143(4): 275-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25195637

RESUMO

Fluorescence in situ hybridization (FISH) has been an efficient way for integrating physical and genetic maps of various small genomes like rice, sorghum and Brachypodium; whereas in the large genomes like barley, the repetitive nature of the genome complicates the generation and detection of single-copy FISH probes. Here, we used exemplarily physical map contigs of a defined interval of the long arm of barley chromosome 2H to evaluate the potential of FISH-based mapping as a supportive means for genetic anchoring of the physical map and to resolve the linear order of contigs along the respective chromosome. Repeat-free FISH probes corresponding to 8 previously anchored BAC contigs were specifically allocated to chromosome 2H. This represented an almost 90% success rate in single-copy FISH probe development. FISH mapping of contigs located in the subtelomeric region revealed an over-performance of genetic mapping over FISH for physical map anchoring.


Assuntos
Cromossomos de Plantas/genética , Hordeum/genética , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , DNA de Plantas/genética , Genoma de Planta , Hibridização in Situ Fluorescente , Mitose , Sintenia
15.
Mol Ecol ; 22(23): 5908-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118210

RESUMO

Asexual lineages are thought to be prone to extinction because of deleterious mutation accumulation (Muller's ratchet). Here, we analyse genomic effects of hybridity, polyploidy and allelic divergence in apomictic plants, and identify loci under divergent selection among sexual/apomictic lineages. RNAseq was used to sequence the flower-specific transcriptomes of five genotypes of the Ranunculus auricomus complex, representing three sexual and two apomictic reproductive biotypes. The five sequence libraries were pooled and de novo assembly performed, and the resultant assembly was used as a backbone for a subsequent alignment of each separate library. High-quality single-nucleotide (SNP) and insertion-deletion (indel) polymorphisms were mined from each library. Annotated genes for which open reading frames (ORF) could be determined were analysed for signatures of divergent versus stabilizing selection. A comparison between all genotypes supports the hypothesis of Pleistocene hybrid origin of both apomictic genotypes from R. carpaticola and R. cassubicifolius, with subsequent allelic divergence of apomictic lineages (Meselson effect). Pairwise comparisons of nonsynonymous (dN) to synonymous (dS) substitution rate ratios between apomictic and sexual genotypes for 1231 genes demonstrated similar distributions for all comparisons, although 324 genes demonstrated outlier (i.e. elevated) dN/dS ratios. Gene ontology analyses of these outliers revealed significant enrichment of genes associated with reproduction including meiosis and gametogenesis, following predictions of divergent selection between sexual and apomictic reproduction, although no significant signal of genome-wide mutation accumulation could be identified. The results suggest that gene function should be considered in order to understand effects of mutation accumulation in asexual lineages.


Assuntos
Evolução Biológica , Hibridização Genética , Mutação , Ranunculus/genética , Seleção Genética , Flores/genética , Biblioteca Gênica , Genoma de Planta , Genótipo , Mutação INDEL , Anotação de Sequência Molecular , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , RNA de Plantas/genética , Reprodução Assexuada/genética , Transcriptoma
16.
Plant Sci ; 330: 111656, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841338

RESUMO

In the context of a continuously increasing human population that needs to be fed, with environmental protection in mind, nitrogen use efficiency (NUE) improvement is becoming very important. To understand the natural variation of traits linked to nitrogen uptake efficiency (UPE), one component of NUE, the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting nitrogen (N) levels in a high-throughput phenotyping facility for six weeks. Three biomass-related, three root-related, and two reflectance-related traits were measured weekly under each treatment. Subsequently, the population was genetically analysed using a total of 13,060 polymorphic haplotypes and singular SNPs for a genome-wide association study (GWAS). In total, we detected 543 quantitative trait loci (QTL) across all time points and traits, which were pooled into 42 stable QTL (sQTL; present in at least three of the six weeks). Besides Rht-B1 and Rht-D1, candidate genes playing a role in gibberellic acid-regulated growth and nitrate transporter genes from the NPF gene family, like NRT 1.1, were linked to sQTL. Two novel sQTL on chromosomes 5 A and 6D showed pleiotropic effects on several traits. The high number of N-specific sQTL indicates that selection for UPE is useful specifically under N-limited conditions.


Assuntos
Nitrogênio , Triticum , Humanos , Triticum/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Fenótipo , Genômica
17.
BMC Plant Biol ; 12: 154, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22935196

RESUMO

BACKGROUND: The majority of nitrogen accumulating in cereal grains originates from proteins remobilised from vegetative organs. However, interactions between grain filling and remobilisation are poorly understood. We used transcriptome large-scale pyrosequencing of flag leaves, glumes and developing grains to identify cysteine peptidase and N transporter genes playing a role in remobilisation and accumulation of nitrogen in barley. RESULTS: Combination of already known and newly derived sequence information reduced redundancy, increased contig length and identified new members of cysteine peptidase and N transporter gene families. The dataset for N transporter genes was aligned with N transporter amino acid sequences of rice and Arabidopsis derived from Aramemnon database. 57 AAT, 45 NRT1/PTR and 22 OPT unigenes identified by this approach cluster to defined subgroups in the respective phylogenetic trees, among them 25 AAT, 8 NRT1/PTR and 5 OPT full-length sequences. Besides, 59 unigenes encoding cysteine peptidases were identified and subdivided into different families of the papain cysteine peptidase clade. Expression profiling of full-length AAT genes highlighted amino acid permeases as the group showing highest transcriptional activity. HvAAP2 and HvAAP6 are highly expressed in vegetative organs whereas HvAAP3 is grain-specific. Sequence similarities cluster HvAAP2 and the putative transporter HvAAP6 together with Arabidopsis transporters, which are involved in long-distance transfer of amino acids. HvAAP3 is closely related to AtAAP1 and AtAAP8 playing a role in supplying N to developing seeds. An important role in amino acid re-translocation can be considered for HvLHT1 and HvLHT2 which are specifically expressed in glumes and flag leaves, respectively. PCA and K-means clustering of AAT transcript data revealed coordinate developmental stages in flag leaves, glumes and grains. Phloem-specific metabolic compounds are proposed that might signal high grain demands for N to distantly located plant organs. CONCLUSIONS: The approach identified cysteine peptidases and specific N transporters of the AAT family as obviously relevant for grain filling and thus, grain yield and quality in barley. Up to now, information is based only on transcript data. To make it relevant for application, the role of identified candidates in sink-source communication has to be analysed in more detail.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Hordeum/enzimologia , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Sementes/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Comunicação Celular , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transporte Proteico , RNA de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de RNA , Transcrição Gênica
18.
Plants (Basel) ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36559621

RESUMO

The multi-parent-advanced-generation-intercross (MAGIC) population WM-800 was developed by intercrossing eight modern winter wheat cultivars to enhance the genetic diversity present in breeding populations. We cultivated WM-800 during two seasons in seven environments under two contrasting nitrogen fertilization treatments. WM-800 lines exhibited highly significant differences between treatments, as well as high heritabilities among the seven agronomic traits studied. The highest-yielding WM-line achieved an average yield increase of 4.40 dt/ha (5.2%) compared to the best founder cultivar Tobak. The subsequent genome-wide-association-study (GWAS), which was based on haplotypes, located QTL for seven agronomic traits including grain yield. In total, 40, 51, and 46 QTL were detected under low, high, and across nitrogen treatments, respectively. For example, the effect of QYLD_3A could be associated with the haplotype allele of cultivar Julius increasing yield by an average of 4.47 dt/ha (5.2%). A novel QTL on chromosome 2B exhibited pleiotropic effects, acting simultaneously on three-grain yield components (ears-per-square-meter, grains-per-ear, and thousand-grain-weight) and plant-height. These effects may be explained by a member of the nitrate-transporter-1 (NRT1)/peptide-family, TaNPF5.34, located 1.05 Mb apart. The WM-800 lines and favorable QTL haplotypes, associated with yield improvements, are currently implemented in wheat breeding programs to develop advanced nitrogen-use efficient wheat cultivars.

19.
Front Plant Sci ; 13: 906462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898222

RESUMO

The use of wild plant species or their halophytic relatives has been considered in plant breeding programs to improve salt and drought tolerance in crop plants. Aeluropus littoralis serves as halophyte model for identification and isolation of novel stress adaptation genes. A. littoralis, a perennial monocot grass, grows in damp or arid areas, often salt-impregnated places and wasteland in cultivated areas, can survive periodically high water salinity, and tolerate high salt concentrations in the soil up to 1,100 mM sodium chloride. Therefore, it serves as valuable genetic resource to understand molecular mechanisms of stress-responses in monocots. The knowledge can potentially be used for improving tolerance to abiotic stresses in economically important crops. Several morphological, anatomical, ecological, and physiological traits of A. littoralis have been investigated so far. After watering with salt water the grass is able to excrete salt via its salt glands. Meanwhile, a number of ESTs (expressed sequence tag), genes and promoters induced by the salt and drought stresses were isolated, sequenced and annotated at a molecular level. Transfer of stress related genes to other species resulted in enhanced stress resistance. Here we describe the genome sequence and structure of A. littoralis analyzed by whole genome sequencing and histological analysis. The chromosome number was determined to be 20 (2n = 2x = 20). The genome size was calculated to be 354 Mb. This genomic information provided here, will support the functional investigation and application of novel genes improving salt stress resistance in crop plants. The utility of the sequence information is exemplified by the analysis of the DREB-transcription factor family.

20.
BMC Plant Biol ; 11: 131, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21951788

RESUMO

BACKGROUND: The improvement of agricultural crops with regard to yield, resistance and environmental adaptation is a perpetual challenge for both breeding and research. Exploration of the genetic potential and implementation of genome-based breeding strategies for efficient rye (Secale cereale L.) cultivar improvement have been hampered by the lack of genome sequence information. To overcome this limitation we sequenced the transcriptomes of five winter rye inbred lines using Roche/454 GS FLX technology. RESULTS: More than 2.5 million reads were assembled into 115,400 contigs representing a comprehensive rye expressed sequence tag (EST) resource. From sequence comparisons 5,234 single nucleotide polymorphisms (SNPs) were identified to develop the Rye5K high-throughput SNP genotyping array. Performance of the Rye5K SNP array was investigated by genotyping 59 rye inbred lines including the five lines used for sequencing, and five barley, three wheat, and two triticale accessions. A balanced distribution of allele frequencies ranging from 0.1 to 0.9 was observed. Residual heterozygosity of the rye inbred lines varied from 4.0 to 20.4% with higher average heterozygosity in the pollen compared to the seed parent pool. CONCLUSIONS: The established sequence and molecular marker resources will improve and promote genetic and genomic research as well as genome-based breeding in rye.


Assuntos
Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Secale/genética , Transcriptoma , Cruzamento , Etiquetas de Sequências Expressas , Frequência do Gene , Genômica/métodos , Técnicas de Genotipagem , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , RNA de Plantas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA