Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 30(37): 11086-95, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25154035

RESUMO

In this study, the dynamics of initially stationary liquid drops on smooth and topographic inclined silicon surfaces was investigated experimentally and by lattice Boltzmann simulations. The transient contact angles and the critical angle of inclination were measured systematically for different liquids, drop sizes, and surfaces having different wettability and surface roughness. In general, the critical angle of inclination is larger for hydrophilic than for hydrophobic surfaces, irrespective of the liquids, and increases with increasing contact angle hysteresis and decreasing drop sizes. A two-phase liquid-vapor lattice Boltzmann model based on the Shan and Chen approach was developed for two dimensions which incorporates the wetting and topographic characteristics of the surface. The simulation results matched the experimentally found features quantitatively and allowed one to explore the roll-off behavior even in cases that can hardly be accessed experimentally.


Assuntos
Modelos Químicos , Silício/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
2.
Sci Rep ; 7(1): 444, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28348395

RESUMO

Wettability is an important factor which controls the displacement of immiscible fluids in permeable media, with far reaching implications for storage of CO2 in deep saline aquifers, fuel cells, oil recovery, and for the remediation of oil contaminated soils. Considering the paradigmatic case of random piles of spherical beads, fluid front morphologies emerging during slow immiscible displacement are investigated in real time by X-ray micro-tomography and quantitatively compared with model predictions. Controlled by the wettability of the bead matrix two distinct displacement patterns are found. A compact front morphology emerges if the invading fluid wets the beads while a fingered morphology is found for non-wetting invading fluids, causing the residual amount of defending fluid to differ by one order of magnitude. The corresponding crossover between these two regimes in terms of the advancing contact angle is governed by an interplay of wettability and pore geometry and can be predicted on the basis of a purely quasi-static consideration of local instabilities that control the progression of the invading interface.

3.
Rev Sci Instrum ; 87(12): 126105, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28040959

RESUMO

X-ray tomography typically suffers from insufficient temporal resolution when imaging dynamic processes. Using the example of multiphase flow in solid porous media, we adapt an iterative algorithm to compute 3d tomograms from 2d projections, which allows for a significant reduction of scan time while maintaining a high level of reconstruction quality. To this end, a priori knowledge about the porous medium is incorporated into the reconstruction algorithm. This algorithm is universal when monitoring dynamic changes in any static matrix and allows for an at least five times decreased imaging time with respect to standard reconstruction algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA