Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 337, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120784

RESUMO

The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.


Assuntos
Cálcio , Receptores Nicotínicos , Animais , Ratos , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Xenopus laevis
2.
Front Microbiol ; 15: 1343029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384262

RESUMO

Bacterial P450 cytochromes (BacCYPs) are versatile heme-containing proteins responsible for oxidation reactions on a wide range of substrates, contributing to the production of valuable natural products with limitless biotechnological potential. While the sequencing of microbial genomes has provided a wealth of BacCYP sequences, functional characterization lags behind, hindering our understanding of their roles. This study employs a comprehensive approach to predict BacCYP substrate specificity, bridging the gap between sequence and function. We employed an integrated approach combining sequence and functional data analysis, genomic context exploration, 3D structural modeling with molecular docking, and phylogenetic clustering. The research begins with an in-depth analysis of BacCYP sequence diversity and structural characteristics, revealing conserved motifs and recurrent residues in the active site. Phylogenetic analysis identifies distinct groups within the BacCYP family based on sequence similarity. However, our study reveals that sequence alone does not consistently predict substrate specificity, necessitating additional perspectives. The study delves into the genetic context of BacCYPs, utilizing neighboring gene information to infer potential substrates, a method proven very effective in many cases. Molecular docking is employed to assess BacCYP-substrate interactions, confirming potential substrates and providing insights into selectivity. Finally, a comprehensive strategy is proposed for predicting BacCYP substrates, involving all the evaluated approaches. The effectiveness of this strategy is demonstrated with two case studies, highlighting its potential for substrate discovery.

3.
Front Public Health ; 11: 1095202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36935725

RESUMO

Latin America is one of the regions in which the COVID-19 pandemic has a stronger impact, with more than 72 million reported infections and 1.6 million deaths until June 2022. Since this region is ecologically diverse and is affected by enormous social inequalities, efforts to identify genomic patterns of the circulating SARS-CoV-2 genotypes are necessary for the suitable management of the pandemic. To contribute to the genomic surveillance of the SARS-CoV-2 in Latin America, we extended the number of SARS-CoV-2 genomes available from the region by sequencing and analyzing the viral genome from COVID-19 patients from seven countries (Argentina, Brazil, Costa Rica, Colombia, Mexico, Bolivia, and Peru). Subsequently, we analyzed the genomes circulating mainly during 2021 including records from GISAID database from Latin America. A total of 1,534 genome sequences were generated from seven countries, demonstrating the laboratory and bioinformatics capabilities for genomic surveillance of pathogens that have been developed locally. For Latin America, patterns regarding several variants associated with multiple re-introductions, a relatively low percentage of sequenced samples, as well as an increment in the mutation frequency since the beginning of the pandemic, are in line with worldwide data. Besides, some variants of concern (VOC) and variants of interest (VOI) such as Gamma, Mu and Lambda, and at least 83 other lineages have predominated locally with a country-specific enrichments. This work has contributed to the understanding of the dynamics of the pandemic in Latin America as part of the local and international efforts to achieve timely genomic surveillance of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , América Latina/epidemiologia , Pandemias , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA