Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118847, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582427

RESUMO

Growing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the µM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator-activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 µM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.


Assuntos
Adipócitos , Adipogenia , Ácidos Cicloexanocarboxílicos , Ácidos Dicarboxílicos , Metabolômica , Humanos , Metabolômica/métodos , Ácidos Dicarboxílicos/farmacologia , Ácidos Dicarboxílicos/metabolismo , Adipogenia/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Ácidos Cicloexanocarboxílicos/farmacologia , Carbono/metabolismo , Linhagem Celular , Plastificantes/toxicidade
2.
Toxicol Appl Pharmacol ; 475: 116650, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541627

RESUMO

Allergic contact dermatitis (ACD) is the predominant form of immunotoxicity in humans. The sensitizing potential of chemicals can be assessed in vitro. However, a better mechanistic understanding could improve the current OECD-validated test battery. The aim of this study was to get insights into toxicity mechanisms of four contact allergens, p-benzoquinone (BQ), 2,4-dinitrochlorobenzene (DNCB), p-nitrobenzyl bromide (NBB) and NiSO4, by analyzing differential proteome alterations in THP-1 cells using two common proteomics workflows, stable isotope labeling by amino acids in cell culture (SILAC) and label-free quantification (LFQ). Here, SILAC was found to deliver more robust results. Overall, the four allergens induced similar responses in THP-1 cells, which underwent profound metabolic reprogramming, including a striking upregulation of the TCA cycle accompanied by pronounced induction of the Nrf2 oxidative stress response pathway. The magnitude of induction varied between the allergens with DNCB and NBB being most potent. A considerable overlap between transcriptome-based signatures of the GARD assay and the proteins identified in our study was found. When comparing the results of this study to a previous proteomics study in human primary monocyte-derived dendritic cells, we found a rather low share in regulated proteins. However, on pathway level, the overlap was high, indicating that affected pathways rather than single proteins are more eligible to investigate proteomic changes induced by contact allergens. Overall, this study confirms the potential of proteomics to obtain a profound mechanistic understanding, which may help improving existing in vitro assays for skin sensitization.


Assuntos
Alérgenos , Dermatite Alérgica de Contato , Humanos , Alérgenos/toxicidade , Dinitroclorobenzeno , Células THP-1 , Proteômica , Redes e Vias Metabólicas
3.
Gut ; 71(11): 2179-2193, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34598978

RESUMO

OBJECTIVE: Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN: Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS: While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION: Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/genética , Obesidade/genética , Obesidade/metabolismo , Proteoma/metabolismo
4.
Biol Chem ; 402(11): 1427-1440, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34472763

RESUMO

Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.


Assuntos
Glicosaminoglicanos/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Carioferinas/metabolismo , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Células Cultivadas , Cromatografia Líquida , Glicosaminoglicanos/química , Serina Peptidase 1 de Requerimento de Alta Temperatura A/química , Serina Peptidase 1 de Requerimento de Alta Temperatura A/isolamento & purificação , Humanos , Carioferinas/química , Carioferinas/isolamento & purificação , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/química , Proteína Associada a Proteínas Relacionadas a Receptor de LDL/isolamento & purificação , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/isolamento & purificação , Espectrometria de Massas em Tandem , Proteína Exportina 1
5.
J Immunol ; 202(5): 1501-1509, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30659107

RESUMO

The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.


Assuntos
Proteína ADAM17/imunologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Macrófagos/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-3/imunologia , Fatores de Necrose Tumoral/imunologia , Proteína ADAM17/antagonistas & inibidores , Células Cultivadas , Endotoxinas/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/antagonistas & inibidores , Macrófagos/imunologia , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral
6.
Immunol Rev ; 279(1): 23-35, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28856736

RESUMO

Bile salts are the water-soluble end products of hepatic cholesterol catabolism that are released into the duodenum and solubilize lipids due to their amphipathic structure. Bile salts also act as endogenous ligands for dedicated nuclear receptors that exert a plethora of biological processes, mostly related to metabolism. Bile salts are actively reclaimed in the distal part of the small intestine, released into the portal system, and subsequently extracted by the liver. This enterohepatic cycle is critically dependent on dedicated bile salt transporters. In the intestinal lumen, bile salts exert direct antimicrobial activity based on their detergent property and shape the gut microbiota. Bile salt metabolism by gut microbiota serves as a mechanism to counteract this toxicity and generates bile salt species that are distinct from those of the host. Innate immune cells of the liver play an important role in the early recognition and effector response to invading microbes. Bile salts signal primarily via the membrane receptor TGR5 and the intracellular farnesoid-x receptor, both present in innate immune cells. In this review, the interactions between bile salts, gut microbiota, and hepatic innate immunity are discussed.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/imunologia , Imunidade Inata , Fígado/imunologia , Animais , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Fígado/microbiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Proteomics ; : e1900405, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32384580

RESUMO

Most information on molecular processes accompanying and driving adipocyte differentiation are derived from rodent models. Here, we provide a comprehensive analysis of combined transcriptomic and proteomic alterations during adipocyte differentiation in Simpson-Golabi-Behmel Syndrome (SGBS) cells. The SGBS cells are a well-established and the most widely applied cell model to study human adipocyte differentiation and cell biology. However, the molecular alterations during human adipocyte differentiation in SGBS cells have not yet been described in a combined analysis of proteome and transcriptome. Here we present a global proteomic and transcriptomic data set comprising relative quantification of a total of 14372 mRNA transcripts and 2641 intracellular and secreted proteins. 1153 proteins and 313 genes were determined as differentially expressed between preadipocytes and the fully differentiated cells including adiponectin, lipoprotein lipase, fatty acid binding protein 4, fatty acid synthase, stearoyl-CoA desaturase and apolipoprotein E and many other proteins from the fatty acid synthesis, amino acid synthesis as well as glucose and lipid metabolic pathways. Preadipocyte markers, such as latexin, GATA6 and CXCL6, were found to be significantly downregulated at the protein and transcript level. This multi-omics data set provides a deep molecular profile of adipogenesis and will support future studies to understand adipocyte function. This article is protected by copyright. All rights reserved.

8.
Arch Toxicol ; 94(2): 371-388, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32034435

RESUMO

Exposure of cells or organisms to chemicals can trigger a series of effects at the regulatory pathway level, which involve changes of levels, interactions, and feedback loops of biomolecules of different types. A single-omics technique, e.g., transcriptomics, will detect biomolecules of one type and thus can only capture changes in a small subset of the biological cascade. Therefore, although applying single-omics analyses can lead to the identification of biomarkers for certain exposures, they cannot provide a systemic understanding of toxicity pathways or adverse outcome pathways. Integration of multiple omics data sets promises a substantial improvement in detecting this pathway response to a toxicant, by an increase of information as such and especially by a systemic understanding. Here, we report the findings of a thorough evaluation of the prospects and challenges of multi-omics data integration in toxicological research. We review the availability of such data, discuss options for experimental design, evaluate methods for integration and analysis of multi-omics data, discuss best practices, and identify knowledge gaps. Re-analyzing published data, we demonstrate that multi-omics data integration can considerably improve the confidence in detecting a pathway response. Finally, we argue that more data need to be generated from studies with a multi-omics-focused design, to define which omics layers contribute most to the identification of a pathway response to a toxicant.


Assuntos
Genômica/métodos , Metabolômica/métodos , Proteômica/métodos , Toxicologia/métodos , Animais , Biologia Computacional/métodos , Humanos , Processamento de Proteína Pós-Traducional , Análise de Célula Única , Distribuição Tecidual
9.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317022

RESUMO

Insights into the modes of action (MoAs) of xenobiotics are of utmost importance for the definition of adverse outcome pathways (AOPs), which are essential for a mechanism-based risk assessment. A well-established strategy to reveal MoAs of xenobiotics is the use of omics. However, often an even more comprehensive approach is needed, which can be achieved using multi-omics. Since the immune system plays a central role in the defense against foreign substances and pathogens, with the innate immune system building a first barrier, we systematically reviewed multi-omics studies investigating the effects of xenobiotics on macrophages. Surprisingly, only nine publications were identified, combining proteomics with transcriptomics or metabolomics. We summarized pathways and single proteins, transcripts, or metabolites, which were described to be affected upon treatment with xenobiotics in the reviewed studies, thus revealing a broad range of effects. In summary, we show that macrophages are a relevant model system to investigate the toxicological effects induced by xenobiotics. Furthermore, the multi-omics approaches led to a more comprehensive overview compared to only one omics layer with slight advantages for combinations that complement each other directly, e.g., proteome and metabolome.


Assuntos
Genômica/métodos , Macrófagos/efeitos dos fármacos , Metabolômica/métodos , Testes de Toxicidade/métodos , Xenobióticos/toxicidade , Animais , Humanos , Macrófagos/metabolismo , Proteoma/genética , Proteoma/metabolismo , Transcriptoma
10.
Molecules ; 25(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054032

RESUMO

Adipokines and apolipoproteins are key regulators and potential biomarkers in obesity and associated diseases and their quantitative assessment is crucial for functional analyses to understand disease mechanisms. Compared to routinely used ELISAs, multiple reaction monitoring (MRM)-based mass spectrometry allows multiplexing and detection of proteins for which antibodies are not available. Thus, we established an MRM method to quantify 9 adipokines and 10 apolipoproteins in human serum. We optimized sample preparation by depleting the two most abundant serum proteins for improved detectability of low abundant proteins. Intra-day and inter-day imprecision were below 16.5%, demonstrating a high accuracy. In 50 serum samples from participants with either normal weight or obesity, we quantified 8 adipokines and 10 apolipoproteins. Significantly different abundances were observed for five adipokines (adipsin, adiponectin, chemerin, leptin, vaspin) and four apolipoproteins (apo-B100/-C2/-C4/-D) between the body mass index (BMI) groups. Additionally, we applied our MRM assay to serum samples from normal weight children and human adipocyte cell culture supernatants to proof the feasibility for large cohort studies and distinct biological matrices. In summary, this multiplexed assay facilitated the investigation of relationships between adipokines or apolipoproteins and phenotypes or clinical parameters in large cohorts, which may contribute to disease prediction approaches in the future.


Assuntos
Adipocinas , Apolipoproteínas , Espectrometria de Massas , Adipócitos/metabolismo , Adipocinas/sangue , Adipocinas/química , Adulto , Fatores Etários , Apolipoproteínas/sangue , Apolipoproteínas/química , Biomarcadores , Criança , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas/métodos , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
11.
J Cell Biochem ; 120(5): 8706-8722, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30485523

RESUMO

The development of novel bioactive biomaterials is urgently needed to meet the needs of an aging population. Both sulfated hyaluronic acid and dexamethasone are candidates for the functionalization of bone grafts, as they have been shown to enhance the differentiation of osteoblasts from bone marrow stromal cells in vitro and in vivo. However, the underlying mechanisms are not fully understood. Furthermore, studies combining different approaches to assess synergistic potentials are rare. In this study, we aim to gain insights into the mode of action of both sulfated hyaluronic acid and dexamethasone by a comprehensive analysis of the cellular fraction, released matrix vesicles, and the extracellular matrix, combining classical biochemical assays with mass spectrometry-based proteomics, supported by novel bioinformatical computations. We found elevated differentiation levels for both treatments, which were further enhanced by a combination of sulfated hyaluronic acid and dexamethasone. Single treatments revealed specific effects on osteogenic differentiation. Dexamethasone activates signalling pathways involved in the differentiation of osteoblasts, for example, CXC-motif chemokine receptor type 4 and mitogen-activated protein kinases. The effects of sulfated hyaluronic acid were predominantly linked to an alteration in the composition of the extracellular matrix, affecting the synthesis, secretion, and/or activity of fibrillary (fibronectin and thrombospondin-2) and nonfibrillary (transglutaminase-2, periostin, and lysyloxidase) extracellular matrix components, including proteases and their inhibitors (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-3). The effects were treatment specific, and less additive or contrary effects were found. Thus, we anticipate that the synergistic action of the treatment-specific effects is the key driver in elevated osteogenesis.

12.
Part Fibre Toxicol ; 16(1): 38, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653258

RESUMO

BACKGROUND: Nanomaterials (NMs) can be fine-tuned in their properties resulting in a high number of variants, each requiring a thorough safety assessment. Grouping and categorization approaches that would reduce the amount of testing are in principle existing for NMs but are still mostly conceptual. One drawback is the limited mechanistic understanding of NM toxicity. Thus, we conducted a multi-omics in vitro study in RLE-6TN rat alveolar epithelial cells involving 12 NMs covering different materials and including a systematic variation of particle size, surface charge and hydrophobicity for SiO2 NMs. Cellular responses were analyzed by global proteomics, targeted metabolomics and SH2 profiling. Results were integrated using Weighted Gene Correlation Network Analysis (WGCNA). RESULTS: Cluster analyses involving all data sets separated Graphene Oxide, TiO2_NM105, SiO2_40 and Phthalocyanine Blue from the other NMs as their cellular responses showed a high degree of similarities, although apical in vivo results may differ. SiO2_7 behaved differently but still induced significant changes. In contrast, the remaining NMs were more similar to untreated controls. WGCNA revealed correlations of specific physico-chemical properties such as agglomerate size and redox potential to cellular responses. A key driver analysis could identify biomolecules being highly correlated to the observed effects, which might be representative biomarker candidates. Key drivers in our study were mainly related to oxidative stress responses and apoptosis. CONCLUSIONS: Our multi-omics approach involving proteomics, metabolomics and SH2 profiling proved useful to obtain insights into NMs Mode of Actions. Integrating results allowed for a more robust NM categorization. Moreover, key physico-chemical properties strongly correlating with NM toxicity were identified. Finally, we suggest several key drivers of toxicity that bear the potential to improve future testing and assessment approaches.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Metabolômica/métodos , Nanoestruturas/classificação , Nanoestruturas/toxicidade , Proteômica/métodos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Grafite/classificação , Grafite/toxicidade , Tamanho da Partícula , Ratos , Dióxido de Silício/classificação , Dióxido de Silício/toxicidade , Propriedades de Superfície , Titânio/classificação , Titânio/toxicidade
13.
Arthritis Rheum ; 65(6): 1468-76, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23494522

RESUMO

OBJECTIVE: The cytokine tumor necrosis factor (TNF) plays a central role in the pathogenesis of rheumatoid arthritis (RA), but its disease-specific effector mechanisms have not been fully elucidated. This study was undertaken to investigate the role of TNF in T cell accumulation and migration in the synovitic joints of RA patients. METHODS: Vital tissue sections from rheumatoid synovium were generated using a horizontally oscillating microtome and were coincubated with fluorescence-labeled CD4+ T cells. Migration was detected by fluorescence and confocal microscopy. Migrating T cells were recovered from the tissue and analyzed for phenotype. Chemotaxis of CD4+ T cells from RA patients in response to increasing concentrations of TNF was analyzed in Transwell experiments. RESULTS: CD4+ T cells from RA patients migrated into the tissue sections in significantly higher numbers than T cells from healthy controls. Migrating CD4+ T cells differed from nonmigrating ones in their increased expression of TNF receptor type I (TNFRI), which was expressed on a fraction of circulating CD4+ T cells from RA patients, but not from controls. CD4+ T cells from the peripheral blood of RA patients were also found to migrate along TNF concentration gradients ex vivo. Accordingly, blockade of either TNF or TNFRI nearly abrogated in vitro T cell migration in synovial tissue. CONCLUSION: Our findings indicate that the interaction of TNF with TNFRI is pivotal for T cell migration in synovial tissue in vitro, and thereby suggest a relevant role of the cytokine for in vivo T cell trafficking to synovitic joints.


Assuntos
Artrite Reumatoide/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Membrana Sinovial/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/imunologia , Técnicas de Cultura de Células , Ensaios de Migração de Leucócitos , Feminino , Citometria de Fluxo , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Membrana Sinovial/imunologia , Adulto Jovem
14.
Sci Total Environ ; 914: 169650, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159774

RESUMO

Since European regulators restricted the use of bacteriocidic triclosan (TCS), alternatives for TCS are emerging. Recently, TCS has been shown to reprogram immune metabolism, trigger the NLRP3 inflammasome, and subsequently the release of IL-1ß in human macrophages, but data on substitutes is scarce. Hence, we aimed to examine the effects of TCS compared to its alternatives at the molecular level in human macrophages. LPS-stimulated THP-1 macrophages were exposed to TCS or its substitutes, including benzalkonium chloride, benzethonium chloride, chloroxylenol, chlorhexidine (CHX) and cetylpyridinium chloride, with the inhibitory concentration (IC10-value) of cell viability to decipher their mode of action. TCS induced the release of the pro-inflammatory cytokine TNF and high level of IL-1ß, suggesting the activation of the NLRP3-inflammasome, which was confirmed by non-apparent IL-1ß under the NLRP3-inhibitor MCC950 treatment d. While IL-6 release was reduced in all treatments, the alternative CHX completely abolished the release of all investigated cytokines. To unravel the underlying molecular mechanisms, we used untargeted LC-MS/MS-based proteomics. TCS and CHX showed the strongest cellular response at the protein and signalling pathway level, whereby pathways related to metabolism, translation, cellular stress and migration were mainly affected but to different proposed modes of action. TCS inhibited mitochondrial electron transfer and affected phagocytosis. In contrast, in CHX-treated cells, the translation was arrested due to stress conditions, resulting in the formation of stress granules. Mitochondrial (e.g. ATP5F1D, ATP5PB, UQCRQ) and ribosomal (e.g. RPL10, RPL35, RPS23) proteins were revealed as putative key drivers. Furthermore, we have demonstrated the formation of podosomes by CHX, potentially involved in ECM degradation. Our results exhibit modulation of the immune response in macrophages by TCS and its substitutes and illuminated underlying molecular effects. These results illustrate critical processes involved in the modulation of macrophages' immune response by TCS and its alternatives, providing information essential for hazard assessment.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Triclosan , Humanos , Inflamassomos/metabolismo , Triclosan/metabolismo , Clorexidina/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Macrófagos , Interleucina-1beta/metabolismo , Citocinas/metabolismo , Imunidade
15.
Microbiome Res Rep ; 3(2): 14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841406

RESUMO

The intestinal microbiota and its metabolites are known to influence host metabolic health. However, little is known about the role of specific microbes. In this work, we used the minimal consortium Oligo-Mouse-Microbiota (OMM12) to study the function of Coriobacteriia under defined conditions in gnotobiotic mice. OMM12 mice with or without the addition of the dominant gut bacterium Eggerthella lenta (E. lenta) were fed with diets varying in fat content and primary bile acids. E. lenta stably colonised the mouse caecum at high relative abundances (median: 27.5%). This was accompanied by decreased occurrence of Akkermansia muciniphila and Enterococcus faecalis, but results did not reach statistical significance in all groups depending on diet and inter-individual differences. Changes in host parameters (anthropometry, blood glucose, and cholesterol) and liver proteomes were primarily due to diet. In contrast, metabolomes in colon content differed significantly between the colonisation groups. The presence of E. lenta was associated with elevated levels of latifolicinin C acid and decreased creatine, sarcosine, N,N-dimethylarginine, and N-Acetyl-DL-methionine. In conclusion, E. lenta altered specific metabolites in the colon but did not have significant effects on the mice or liver proteomes under the conditions tested due to marked inter-individual differences.

16.
Front Immunol ; 15: 1416543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050851

RESUMO

Introduction: Obesity is associated with a plethora of health complications, including increased susceptibility to infections or decreased vaccine efficacy, partly due to dysregulated immune responses. Monocytes play a crucial role in innate immunity, yet their functional alterations in obesity remain poorly understood. Methods: Here, we employed proteomic and metabolomic analyses to investigate monocyte characteristics in individuals with overweight, obesity, impaired glucose tolerance (IGT), and type 2 diabetes (T2D), compared to lean donors. Results and discussion: Our results revealed distinct molecular signatures in monocytes from individuals with obesity, with significant alterations in pathways related to metabolism, cellular migration, and phagocytosis. Moreover, LPS-induced activation of monocytes unveiled heightened metabolic reprogramming towards glycolysis in subjects with obesity accompanied by dysregulated cytokine responses and elevated oxidative stress. Additionally, monocytes from donors with obesity exhibited increased lipid droplet accumulation. These findings shed light on the immunometabolic dysregulation underlying obesity-associated immune dysfunction, highlighting potential targets for therapeutic intervention.


Assuntos
Citocinas , Glicólise , Monócitos , Obesidade , Estresse Oxidativo , Humanos , Obesidade/imunologia , Obesidade/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Citocinas/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Proteômica/métodos , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo
17.
iScience ; 27(6): 109711, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38840842

RESUMO

Obesity, characterized by enlarged and dysfunctional adipose tissue, is among today's most pressing global public health challenges with continuously increasing prevalence. Despite the importance of post-translational protein modifications (PTMs) in cellular signaling, knowledge of their impact on adipogenesis remains limited. Here, we studied the temporal dynamics of transcriptome, proteome, central carbon metabolites, and the acetyl- and phosphoproteome during adipogenesis using LC-MS/MS combined with PTM enrichment strategies on human (SGBS) and mouse (3T3-L1) adipocyte models. Both cell lines exhibited unique PTM profiles during adipogenesis, with acetylated proteins being enriched for central energy metabolism, while phosphorylated proteins related to insulin signaling and organization of cellular structures. As candidates with strong correlation to the adipogenesis timeline we identified CD44 and the acetylation sites FASN_K673 and IDH_K272. While results generally aligned between SGBS and 3T3-L1 cells, details appeared cell line specific. Our datasets on SGBS and 3T3-L1 adipogenesis dynamics are accessible for further mining.

19.
Am J Physiol Regul Integr Comp Physiol ; 305(12): R1433-40, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24089382

RESUMO

Feeding a diet high in fat and sucrose (HFS) during pregnancy and lactation is known to increase susceptibility to develop metabolic derangements later in life. A trait for increased behavioral activity may oppose these effects, since this would drain energy from milk produced to be made available to the offspring. To investigate these interactions, we assessed several components of behavioral energetics during lactation in control mice (C) and in mice of two lines selectively bred for high wheel-running activity (S1, S2) subjected to a HFS diet or a low-fat (LF) diet. Energy intake, litter growth, and milk energy output at peak lactation (MEO; assessed by subtracting maternal metabolic rate from energy intake) were elevated in HFS-feeding dams across all lines compared with the LF condition, an effect that was particularly evident in the S dams. This effect was not preceded by improved lactation behaviors assessed between postnatal days 1 and 7 (PND 1-7). In fact, S1 dams had less high-quality nursing, and S2 dams showed poorer pup retrieval than C dams during PND 1-7, and S dams had generally higher levels of physical activity at peak lactation. These data demonstrate that HFS feeding increases MEO underlying increased litter and pup growth, particularly in mice with a trait for increased behavioral physical activity.


Assuntos
Gorduras na Dieta/farmacologia , Sacarose Alimentar/farmacologia , Metabolismo Energético/efeitos dos fármacos , Lactação/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Corrida/fisiologia , Animais , Cruzamento , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Metabolismo Energético/fisiologia , Feminino , Lactação/fisiologia , Comportamento Materno/fisiologia , Camundongos , Modelos Animais
20.
Artigo em Inglês | MEDLINE | ID: mdl-36525778

RESUMO

The cellular heat shock response (HSR) comprises transcriptomic and proteomic reactions to thermal stress. It was here addressed, how the proteomic, together with the transcriptomic HSR, relate to the thermal sensitivities of three cold-adapted but differently thermo-sensitive freshwater amphipod species. The proteomes of thermosensitive Eulimnogammarus verrucosus and thermotolerant Eulimnogammarus cyaneus, both endemic to Lake Baikal, and of thermotolerant Holarctic Gammarus lacustris were investigated upon 24 h exposure to the species-specific 10 % lethal temperatures (LT10). Furthermore, correlations of heat stress induced changes in proteomes (this study) and transcriptomes (previous study with identical experimental design) were examined. Proteomes indicated that the HSR activated processes encompassed (i) proteostasis maintenance, (ii) maintenance of cell adhesion, (iii) oxygen transport, (iv) antioxidant response, and (v) regulation of protein synthesis. Thermo-sensitive E. verrucosus showed the most pronounced proteomic HSR and the lowest correlation of transcriptomic and proteomic HSRs. For proteins related to translation (ribosomal proteins, elongation factors), transcriptomic and proteomic changes were inconsistent: transcripts were downregulated in many cases, with levels of corresponding proteins remaining unchanged. In the Eulimnogammarus species, levels of hemocyanin protein but not transcript were increased upon heat stress, suggesting a HSR also directed to enhance oxygen transport. Thermosensitive E. verrucosus showed the most pronounced relocation of transcription/translation activity to proteostasis maintenance, which may indicate that the general species-specific stability of protein structure could be a fundamental determinant of thermotolerance. By combining transcriptomic and proteomic response data, this study provides a comprehensive picture of the cellular HSR components in the studied amphipods.


Assuntos
Anfípodes , Transcriptoma , Animais , Anfípodes/genética , Proteoma/metabolismo , Proteômica , Resposta ao Choque Térmico , Lagos , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA