Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 617(7960): 299-305, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37100908

RESUMO

The enhancement of separation processes and electrochemical technologies such as water electrolysers1,2, fuel cells3,4, redox flow batteries5,6 and ion-capture electrodialysis7 depends on the development of low-resistance and high-selectivity ion-transport membranes. The transport of ions through these membranes depends on the overall energy barriers imposed by the collective interplay of pore architecture and pore-analyte interaction8,9. However, it remains challenging to design efficient, scaleable and low-cost selective ion-transport membranes that provide ion channels for low-energy-barrier transport. Here we pursue a strategy that allows the diffusion limit of ions in water to be approached for large-area, free-standing, synthetic membranes using covalently bonded polymer frameworks with rigidity-confined ion channels. The near-frictionless ion flow is synergistically fulfilled by robust micropore confinement and multi-interaction between ion and membrane, which afford, for instance, a Na+ diffusion coefficient of 1.18 × 10-9 m2 s-1, close to the value in pure water at infinite dilution, and an area-specific membrane resistance as low as 0.17 Ω cm2. We demonstrate highly efficient membranes in rapidly charging aqueous organic redox flow batteries that deliver both high energy efficiency and high-capacity utilization at extremely high current densities (up to 500 mA cm-2), and also that avoid crossover-induced capacity decay. This membrane design concept may be broadly applicable to membranes for a wide range of electrochemical devices and for precise molecular separation.

2.
J Comput Chem ; 45(14): 1112-1129, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38258532

RESUMO

Benzo[d]-X-zolyl-pyridinyl (XO, S, NH) radicals represent a promising class of redox-active molecules for organic batteries. We present a multistep screening procedure to identify the most promising radical candidates. Experimental investigations and highly correlated wave function-based calculations are performed to determine benchmark redox potentials. Based on these, the accuracies of different methods (semi-empirical, density functional theory, wave function-based), solvent models, dispersion corrections, and basis sets are evaluated. The developed screening procedure consists of three steps: First, a conformer search is performed with CREST. The molecules are selected based on the redox potentials calculated using GFN2-xTB. Second, HOMO energies calculated with reparametrized B3LYP-D3(BJ) and the def2-SVP basis set are used as selection criteria. The final molecules are selected based on the redox potentials calculated from Gibbs energies using BP86-D3(BJ)/def2-TZVP. With this multistep screening approach, promising molecules can be suggested for synthesis, and structure-property relationships can be derived.

3.
Small ; 20(6): e2306116, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794626

RESUMO

The COVID-19 mRNA vaccines represent a milestone in developing non-viral gene carriers, and their success highlights the crucial need for continued research in this field to address further challenges. Polymer-based delivery systems are particularly promising due to their versatile chemical structure and convenient adaptability, but struggle with the toxicity-efficiency dilemma. Introducing anionic, hydrophilic, or "stealth" functionalities represents a promising approach to overcome this dilemma in gene delivery. Here, two sets of diblock terpolymers are created comprising hydrophobic poly(n-butyl acrylate) (PnBA), a copolymer segment made of hydrophilic 4-acryloylmorpholine (NAM), and either the cationic 3-guanidinopropyl acrylamide (GPAm) or the 2-carboxyethyl acrylamide (CEAm), which is negatively charged at neutral conditions. These oppositely charged sets of diblocks are co-assembled in different ratios to form mixed micelles. Since this experimental design enables countless mixing possibilities, a machine learning approach is applied to identify an optimal GPAm/CEAm ratio for achieving high transfection efficiency and cell viability with little resource expenses. After two runs, an optimal ratio to overcome the toxicity-efficiency dilemma is identified. The results highlight the remarkable potential of integrating machine learning into polymer chemistry to effectively tackle the enormous number of conceivable combinations for identifying novel and powerful gene transporters.


Assuntos
Micelas , Polietilenoglicóis , Polietilenoglicóis/química , Polímeros/química , Técnicas de Transferência de Genes , Acrilamidas
4.
Chemistry ; 30(31): e202400744, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38629948

RESUMO

Homometallic titanium oxo clusters (TOC) are one of the most important groups of metal oxo clusters. In a previous article, TOC structures with carboxylato and phosphonato ligands were reviewed and categorized. This work is now extended to clusters with other ligands. Comparison of the different cluster types shows how the interplay between condensation of the titanium polyhedra by means of bridging oxygen atoms and the coordination characteristics of the ligands influences the cluster structures and allows working out basic construction principles of the cluster core.

5.
Chemistry ; : e202401570, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877302

RESUMO

The urgent need for sustainable alternatives to fossil fuels in the transportation sector is driving research into novel energy carriers that can meet the high energy density requirements of heavy-duty vehicles without exacerbating the climate change. This concept article examines the synthesis, mechanisms, and challenges associated with oxymethylene ethers (OMEs), a promising class of synthetic fuels potentially derived from carbon dioxide and hydrogen. We highlight the importance of OMEs in the transition towards non-fossil energy sources due to their compatibility with the existing Diesel infrastructure and their cleaner combustion profile. The synthesis mechanisms, including the Schulz-Flory distribution and its implications for OME chain length specificity, and the role of various catalysts and starting materials are discussed in depth. Despite advancements in the field, significant challenges remain, such as overcoming the Schulz-Flory distribution, efficiently managing water byproducts, and improving the overall energy efficiency of the OME synthesis. Addressing these challenges is crucial for OMEs to become a viable alternative fuel, contributing to the reduction of greenhouse gas emissions and the transition to a sustainable energy future in the transportation sector.

6.
Chemistry ; 30(6): e202302979, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-37950854

RESUMO

Sustainability is one of the hot topics of today's research, in particular when it comes to energy-storage systems such as batteries. Redox-active molecules implemented in organic batteries represent a promising alternative to lithium-ion batteries, which partially rely on non-sustainable heavy metal salts. As an alternative, we propose benzothiazole, -oxazole and -imidazole derivatives as redox-active moieties for polymers in organic (radical) batteries. The target molecules were identified by a combination of theoretical and experimental approaches for the investigation of new organic active materials. Herein, we present the synthesis, electrochemical characterization and theoretical investigation of the proposed molecules, which can later be introduced into a polymer backbone and used in organic polymer batteries.

7.
Inorg Chem ; 63(9): 4053-4062, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38373324

RESUMO

In this work, we present a concise modular assembly strategy using one universal heteroleptic 2,6-di(quinolin-8-yl)pyridine-based ruthenium(II) complex as a starting building block. Extending the concept from established ligand modifications and subsequent complexation (classical route), the later appearing chemistry-on-the-complex methodology was used for late-stage syntheses, i.e., assembling discrete building blocks to molecular architectures (here: dyad and triads). We focused on Suzuki-Miyaura and Sonogashira cross-couplings as two of the best-known C-C bond forming reactions. Both were performed on one building block complex bearing a bromine and TIPS-protected alkyne for functional group interconversion (bromine to TMS-protected alkyne, a benzyl azide, or a boronic acid pinacol ester moiety with ≥95% isolated yield and simple purification) as well as building block assemblies using both a triarylamine-based donor and a naphthalene diimide-based acceptor in up to 86% isolated yield. Additionally, the developed purification via automated flash chromatography is simple compared to tedious manual chromatography for ruthenium(II)-based substrates in the classical route. Based on the preliminary characterization by steady-state spectroscopy, the observed emission quenching in the triad (55%) serves as an entry to rationally optimize the modular units via chemistry-on-the-complex to elucidate energy and electron transfer.

8.
Handb Exp Pharmacol ; 284: 3-26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37017790

RESUMO

Conventional drug delivery systems (DDS) today still face several drawbacks and obstacles. High total doses of active pharmaceutical ingredients (API) are often difficult or impossible to deliver due to poor solubility of the API or undesired clearance from the body caused by strong interactions with plasma proteins. In addition, high doses lead to a high overall body burden, in particular if they cannot be delivered specifically to the target site. Therefore, modern DDS must not only be able to deliver a dose into the body, but should also overcome the hurdles mentioned above as examples. One of these promising devices are polymeric nanoparticles, which can encapsulate a wide range of APIs despite having different physicochemical properties. Most importantly, polymeric nanoparticles are tunable to obtain tailored systems for each application. This can already be achieved via the starting material, the polymer, by incorporating, e.g., functional groups. This enables the particle properties to be influenced not only specifically in terms of their interactions with APIs, but also in terms of their general properties such as size, degradability, and surface properties. In particular, the combination of size, shape, and surface modification allows polymeric nanoparticles to be used not only as a simple drug delivery device, but also to achieve targeting. This chapter discusses to what extent polymers can be designed to form defined nanoparticles and how their properties affect their performance.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Polímeros/química , Preparações Farmacêuticas , Nanopartículas/química , Princípios Ativos
9.
Anal Chem ; 95(2): 565-569, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36548201

RESUMO

Multifunctional nanoparticle (NP) formulations for medical purposes have already found their way toward envisaged translation. A persistent challenge of those systems is, next to NP size analysis, the compositional analysis of the NPs with the polymer as the matrix component and the encapsulated drug, particularly in a quantitative manner. Herein, we report the formulation of poly(lactic-co-glycolic acid) (PLGA) NPs by nanoprecipitation and the analysis of their integrity and size by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Those NPs feature a variety of encapsulated drugs including the well-known ibuprofen (Ibu) as well as dexamethasone (Dex) and dexamethasone acetate (DexAce), with the latter being of potential interest for clinical treatment of SARS-CoV-2 patients. All those dissolved formulation compositions have been subjected to liquid chromatography on reversed-phase silica monolithic columns, allowing to quantitatively assess amounts of small molecule drug and NP constituting PLGA polymer in a single run. The chromatographically resolved hydrophobicity differences of the drugs correlated with their formulation loading and were clearly separated from the PLGA matrix polymer with high resolution. Our study identifies the viability of reversed-phase monolithic silica in the chromatography of both small drug molecules and particularly pharmapolymers in a repeatable and simultaneous fashion, and can provide a valuable strategy for analysis of diverse precursor polymer systems and drug components in multifunctional drug formulations.


Assuntos
COVID-19 , Nanopartículas , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , SARS-CoV-2 , Nanopartículas/química , Cromatografia Líquida , Tamanho da Partícula , Portadores de Fármacos/química
10.
Chemistry ; 29(33): e202203776, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36892172

RESUMO

Online NMR measurements are introduced in the current study as a new analytical setup for investigation of the oxymethylene dimethyl ether (OME) synthesis. For the validation of the setup, the newly established method is compared with state-of-the-art gas chromatographic analysis. Afterwards, the influence of different parameters, such as temperature, catalyst concentration and catalyst type on the OME fuel formation based on trioxane and dimethoxymethane is investigated. As catalysts, AmberlystTM 15 (A15) and trifluoromethanesulfonic acid (TfOH) are utilized. A kinetic model is applied to describe the reaction in more detail. Based on these results, the activation energy (A15: 48.0 kJ mol-1 and TfOH: 72.3 kJ mol-1 ) and the order in catalyst (A15: 1.1 and TfOH: 1.3) are calculated and discussed.


Assuntos
Éter , Temperatura , Espectroscopia de Ressonância Magnética/métodos , Catálise , Cinética
11.
Mol Pharm ; 20(12): 6151-6161, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37906224

RESUMO

Mucus mechanically protects the intestinal epithelium and impacts the absorption of drugs, with a largely unknown role for bile. We explored the impacts of bile on mucosal biomechanics and drug transport within mucus. Bile diffused with square-root-of-time kinetics and interplayed with mucus, leading to transient stiffening captured in Brillouin images and a concentration-dependent change from subdiffusive to Brownian-like diffusion kinetics within the mucus demonstrated by differential dynamic microscopy. Bile-interacting drugs, Fluphenazine and Perphenazine, diffused faster through mucus in the presence of bile, while Metoprolol, a drug with no bile interaction, displayed consistent diffusion. Our findings were corroborated by rat studies, where co-dosing of a bile acid sequestrant substantially reduced the bioavailability of Perphenazine but not Metoprolol. We clustered over 50 drugs based on their interactions with bile and mucin. Drugs that interacted with bile also interacted with mucin but not vice versa. This study detailed the dynamics of mucus biomechanics under bile exposure and linked the ability of a drug to interact with bile to its abbility to interact with mucus.


Assuntos
Bile , Elevadores e Escadas Rolantes , Ratos , Animais , Perfenazina , Muco , Mucinas
12.
Biomacromolecules ; 24(12): 5915-5925, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37987713

RESUMO

Aiming toward the development of tailored carrier materials for the cytostatics panobinostat and imatinib, an amphiphilic block copolymer composed of poly(2-ethyl-2-oxazoline) and a degradable poly(2-(3-phenylpropyl)-2-oxazoline) analogue (dPPhPrOx-b-PEtOx) was synthesized via a postpolymerization synthesis route based on reacylation of oxidized linear poly(ethylene imine). The obtained dPPhPrOx-b-PEtOx was found to readily self-assemble into well-defined micelles with a critical micelle concentration of 1 µg mL-1. The incubation of HUVEC cells with the blank micelles revealed their excellent cytocompatibility (up to 2 mg mL-1), thus confirming the polymers' suitability for potential drug delivery application. Subsequently, the encapsulation of the two cytostatics, panobinostat and imatinib, into the dPPhPrOx-b-PEtOx micelles was successfully demonstrated (Dh ≈ 80 nm, PDI ≈ 0.16), whereby the well-defined nature of the micelle was maintained upon extended incubation at 37 °C (36 h) and storage at 4 °C (1 month). Labeling of the micelles with Alexa Fluor 594 and Alexa Fluor 647, which form a Förster resonance energy transfer (FRET) pair, indicated the stability of loaded micelles upon dilution until the CMC. Finally, the cytotoxicity of the loaded micelles was investigated against three different cell lines: Medulloblastoma cell lines ONS-76 and DAOY as well as the glioblastoma cell line U87MG. While the panobinostat-loaded micelles displayed similar cytotoxicity compared to the pure drug in the cell lines, imatinib-loaded micelles were found to be more potent compared to the pristine drug, as significantly higher cytotoxicity was observed across all three cell lines.


Assuntos
Portadores de Fármacos , Micelas , Panobinostat/farmacologia , Mesilato de Imatinib/farmacologia , Portadores de Fármacos/química , Glicina , Polímeros/química , Polietilenoglicóis/química
13.
Macromol Rapid Commun ; 44(3): e2200651, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36413677

RESUMO

A 3-benzylmorpholine-2,5-dione monomer is synthesized from the natural amino acid l-phenylalanine and characterized by means of nuclear magnetic resonance and infrared spectroscopy, electrospray ionization mass spectrometry, and elemental analysis. Subsequent to preliminary polymerization studies, a well-defined poly(ester amide) homopolymer is synthesized via ring-opening polymerization using a binary catalyst system comprising 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and a 1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexylthiourea (TU) cocatalyst with a feed ratio of M/I/DBU/TU = 100/1/1/10. Kinetic studies reveal high controllability of the dispersities and molar masses up to conversions of almost 80%. Analysis by mass spectrometry hints toward excellent end-group fidelity at these conditions. In consequence, utilization of hydroxyl-functionalized poly(ethylene glycol) and poly(2-ethyl-2-oxazoline) as macroinitiators results in amphiphilic block copolymers. Bulk miscibility of the building blocks is indicated by differential scanning calorimetry investigations. As more and more promising new drugs are based on hydrophobic molecules featuring aromatic moieties, the novel polyesteramides seem highly promising materials to be used as potential drug delivery vehicles.


Assuntos
Polietilenoglicóis , Polímeros , Polimerização , Cinética , Polímeros/química , Polietilenoglicóis/química , Aminoácidos
14.
Appl Microbiol Biotechnol ; 107(2-3): 819-834, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36480041

RESUMO

Conidia of the airborne human-pathogenic fungus Aspergillus fumigatus are inhaled by humans. In the lung, they are phagocytosed by alveolar macrophages and intracellularly processed. In macrophages, however, conidia can interfere with the maturation of phagolysosomes to avoid their elimination. To investigate whether polymeric particles (PPs) can reach this intracellular pathogen in macrophages, we formulated dye-labeled PPs with a size allowing for their phagocytosis. PPs were efficiently taken up by RAW 264.7 macrophages and were found in phagolysosomes. When macrophages were infected with conidia prior to the addition of PPs, we found that they co-localized in the same phagolysosomes. Mechanistically, the fusion of phagolysosomes containing PPs with phagolysosomes containing conidia was observed. Increasing concentrations of PPs increased fusion events, resulting in 14% of phagolysosomes containing both conidia and PPs. We demonstrate that PPs can reach conidia-containing phagolysosomes, making these particles a promising carrier system for antimicrobial drugs to target intracellular pathogens. KEY POINTS: • Polymer particles of a size larger than 500 nm are internalized by macrophages and localized in phagolysosomes. • These particles can be delivered to Aspergillus fumigatus conidia-containing phagolysosomes of macrophages. • Enhanced phagolysosome fusion by the use of vacuolin1 can increase particle delivery.


Assuntos
Aspergillus fumigatus , Fagossomos , Humanos , Esporos Fúngicos , Macrófagos/microbiologia , Fagocitose
15.
Molecules ; 28(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37836647

RESUMO

(1) Background: In the oral environment, sound enamel and dental restorative materials are immediately covered by a pellicle layer, which enables bacteria to attach. For the development of new materials with repellent surface functions, information on the formation and maturation of salivary pellicles is crucial. Therefore, the present in situ study aimed to investigate the proteomic profile of salivary pellicles formed on different dental composites. (2) Methods: Light-cured composite and bovine enamel samples (controls) were exposed to the oral cavity for 30, 90, and 120 min. All samples were subjected to optical and mechanical profilometry, as well as SEM surface evaluation. Acquired pellicles and unstimulated whole saliva samples were analyzed by SELDI-TOF-MS. The significance was determined by the generalized estimation equation and the post-hoc bonferroni adjustment. (3) Results: SEM revealed the formation of homogeneous pellicles on all test and control surfaces. Profilometry showed that composite surfaces tend to be of higher roughness compared to enamel. SELDI-TOF-MS detected up to 102 different proteins in the saliva samples and up to 46 proteins in the pellicle. Significant differences among 14 pellicle proteins were found between the composite materials and the controls. (4) Conclusions: Pellicle formation was material- and time-dependent. Proteins differed among the composites and to the control.


Assuntos
Proteômica , Saliva , Animais , Bovinos , Película Dentária , Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Bioconjug Chem ; 33(1): 97-104, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34967625

RESUMO

Interleukin-4 (IL-4) is a potentially interesting anti-inflammatory therapeutic, which is rapidly excreted. Therefore, serum half-life extension by polymer conjugation is desirable, which may be done by PEGylation. Here, we use PEtOx as an alternative to PEG for bioconjugate engineering. We genetically extended murine IL-4 (mIL-4) with the d-domain of insulin-like growth factor I (IGF-I), a previously identified substrate of transglutaminase (TG) Factor XIIIa (FXIIIa). Thereby, engineered mIL-4 (mIL-4-TG) became an educt for TG catalyzed C-terminal, site-directed conjugation. This was deployed to enzymatically couple an azide group containing peptide sequence to mIL-4, allowing C-terminal bioconjugation of polyethylene glycol or poly(2-ethyl-2-oxazoline). Both bioconjugates had wild-type potency and alternatively polarized macrophages.


Assuntos
Interleucina-4
17.
Chemistry ; 28(32): e202104191, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202499

RESUMO

Two-photon polymerization (2PP) represents a powerful technique for the fabrication of precise three-dimensional structures on a micro- and nanometer scale for various applications. While many review articles are focusing on the used polymeric materials and their application in 2PP, in this review the class of two-photon photo initiators (2PI) used for radical polymerization is discussed in detail. Because the demand for highly efficient 2PI has increased in the last decades, different approaches in designing new efficient 2PIs occurred. This review summarizes the 2PIs known in literature and discusses their absorption behavior under one- and two-photon absorption (2PA) conditions, their two-photon cross sections (σTPA ) as well as their efficiency under 2PP conditions. Here, the photo initiators are grouped depending on their chromophore system (D-π-A-π-D, D-π-D, etc.). Their polymerization efficiencies are evaluated by fabrication windows (FW) depending on different laser intensities and writing speeds.

18.
Biomacromolecules ; 23(9): 3593-3601, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904477

RESUMO

Influenza A viruses (IAV), including the pandemic 2009 (pdm09) H1N1 or avian influenza H5N1 virus, may advance into more pathogenic, potentially antiviral drug-resistant strains (including loss of susceptibility against oseltamivir). Such IAV strains fuel the risk of future global outbreaks, to which this study responds by re-engineering Interferon-α2a (IFN-α2a) bioconjugates into influenza therapeutics. Type-I interferons such as IFN-α2a play an essential role in influenza infection and may prevent serious disease courses. We site-specifically conjugated a genetically engineered IFN-α2a mutant to poly(2-ethyl-2-oxazoline)s (PEtOx) of different molecular weights by strain-promoted azide-alkyne cyclo-addition. The promising pharmacokinetic profile of the 25 kDa PEtOx bioconjugate in mice echoed an efficacy in IAV-infected ferrets. One intraperitoneal administration of this bioconjugate, but not the marketed IFN-α2a bioconjugate, changed the disease course similar to oseltamivir, given orally twice every study day. PEtOxylated IFN-α2a bioconjugates may expand our therapeutic arsenal against future influenza pandemics, particularly in light of rising first-line antiviral drug resistance to IAV.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Antivirais/farmacologia , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/tratamento farmacológico , Camundongos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico
19.
J Nanobiotechnology ; 20(1): 5, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983538

RESUMO

BACKGROUND: Insufficient solubility and stability of bioactive small molecules as well as poor biocompatibility may cause low bioavailability and are common obstacles in drug development. One example of such problematic molecules is 6-bromoindirubin-3'-glycerol-oxime ether (6BIGOE), a hydrophobic indirubin derivative. 6BIGOE potently modulates the release of inflammatory cytokines and lipid mediators from isolated human monocytes through inhibition of glycogen synthase kinase-3 in a favorable fashion. However, 6BIGOE suffers from poor solubility and short half-lives in biological aqueous environment and exerts cytotoxic effects in various mammalian cells. In order to overcome the poor water solubility, instability and cytotoxicity of 6BIGOE, we applied encapsulation into poly(D,L-lactide-co-glycolide) (PLGA)-based nanoparticles by employing formulation methods using the sustainable solvents Cyrene™ or 400 g/mol poly(ethylene glycol) as suitable technology for efficient drug delivery of 6BIGOE. RESULTS: For all preparation techniques the physicochemical characterization of 6BIGOE-loaded nanoparticles revealed comparable crystallinity, sizes of about 230 nm with low polydispersity, negative zeta potentials around - 15 to - 25 mV, and biphasic release profiles over up to 24 h. Nanoparticles with improved cellular uptake and the ability to mask cytotoxic effects of 6BIGOE were obtained as shown in human monocytes over 48 h as well as in a shell-less hen's egg model. Intriguingly, encapsulation into these nanoparticles fully retains the anti-inflammatory properties of 6BIGOE, that is, favorable modulation of the release of inflammation-relevant cytokines and lipid mediators from human monocytes. CONCLUSIONS: Our formulation method of PLGA-based nanoparticles by applying sustainable, non-toxic solvents is a feasible nanotechnology that circumvents the poor bioavailability and biocompatibility of the cargo 6BIGOE. This technology yields favorable drug delivery systems for efficient interference with inflammatory processes, with improved pharmacotherapeutic potential.


Assuntos
Indóis , Sistemas de Liberação de Fármacos por Nanopartículas , Nanopartículas/química , Oximas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Adolescente , Adulto , Idoso , Animais , Sobrevivência Celular/efeitos dos fármacos , Fluoresceína/química , Fluoresceína/farmacocinética , Humanos , Indóis/química , Indóis/farmacocinética , Indóis/toxicidade , Leucócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , Nanopartículas/toxicidade , Nanotecnologia , Oximas/química , Oximas/farmacocinética , Oximas/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/toxicidade , Solventes/química , Adulto Jovem
20.
Cell Mol Life Sci ; 79(1): 40, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971430

RESUMO

Leukotrienes are pro-inflammatory lipid mediators generated by 5-lipoxygenase aided by the 5-lipoxygenase-activating protein (FLAP). BRP-201, a novel benzimidazole-based FLAP antagonist, inhibits leukotriene biosynthesis in isolated leukocytes. However, like other FLAP antagonists, BRP-201 fails to effectively suppress leukotriene formation in blood, which limits its therapeutic value. Here, we describe the encapsulation of BRP-201 into poly(lactide-co-glycolide) (PLGA) and ethoxy acetalated dextran (Ace-DEX) nanoparticles (NPs), aiming to overcome these detrimental pharmacokinetic limitations and to enhance the bioactivity of BRP-201. NPs loaded with BRP-201 were produced via nanoprecipitation and the physicochemical properties of the NPs were analyzed in-depth using dynamic light scattering (size, dispersity, degradation), electrophoretic light scattering (effective charge), NP tracking analysis (size, dispersity), scanning electron microscopy (size and morphology), UV-VIS spectroscopy (drug loading), an analytical ultracentrifuge (drug release, degradation kinetics), and Raman spectroscopy (chemical attributes). Biological assays were performed to study cytotoxicity, cellular uptake, and efficiency of BRP-201-loaded NPs versus free BRP-201 to suppress leukotriene formation in primary human leukocytes and whole blood. Both PLGA- and Ace-DEX-based NPs were significantly more efficient to inhibit leukotriene formation in neutrophils versus free drug. Whole blood experiments revealed that encapsulation of BRP-201 into Ace-DEX NPs strongly increases its potency, especially upon pro-longed (≥ 5 h) incubations and upon lipopolysaccharide-challenge of blood. Finally, intravenous injection of BRP-201-loaded NPs significantly suppressed leukotriene levels in blood of mice in vivo. These results reveal the feasibility of our pharmacological approach using a novel FLAP antagonist encapsulated into Ace-DEX-based NPs with improved efficiency in blood to suppress leukotriene biosynthesis.


Assuntos
Antagonistas de Leucotrienos/farmacologia , Leucotrienos , Nanopartículas/química , Animais , Feminino , Voluntários Saudáveis , Humanos , Leucotrienos/biossíntese , Leucotrienos/metabolismo , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA