Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 148: 1-14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853649

RESUMO

RATIONALE: Among its many biological roles, fibroblast growth factor 2 (FGF2) protects the heart from dysfunction and damage associated with an ischemic attack. Our laboratory demonstrated that its protection against myocardial dysfunction occurs by the low molecular weight (LMW) isoform of FGF2, while the high molecular weight (HMW) isoforms are associated with a worsening in post-ischemic recovery of cardiac function. LMW FGF2-mediated cardioprotection is facilitated by activation of multiple kinases, including PKCalpha, PKCepsilon, and ERK, and inhibition of p38 and JNK. OBJECTIVE: Yet, the substrates of those kinases associated with LMW FGF2-induced cardioprotection against myocardial dysfunction remain to be elucidated. METHODS AND RESULTS: To identify substrates in LMW FGF2 improvement of post-ischemic cardiac function, mouse hearts expressing only LMW FGF2 were subjected to ischemia-reperfusion (I/R) injury and analyzed by a mass spectrometry (MS)-based quantitative phosphoproteomic strategy. MS analysis identified 50 phosphorylation sites from 7 sarcoendoplasmic reticulum (SR) proteins that were significantly altered in I/R-treated hearts only expressing LMW FGF2 compared to those hearts lacking FGF2. One of those phosphorylated SR proteins identified was phospholamban (PLB), which exhibited rapid, increased phosphorylation at Threonine-17 (Thr17) after I/R in hearts expressing only LMW FGF2; this was further validated using Selected Reaction Monitoring-based MS workflow. To demonstrate a mechanistic role of phospho-Thr17 PLB in LMW FGF2-mediated cardioprotection, hearts only expressing LMW FGF2 and those expressing only LMW FGF2 with a mutant PLB lacking phosphorylatable Thr17 (Thr17Ala PLB) were subjected to I/R. Hearts only expressing LMW FGF2 showed significantly improved recovery of cardiac function following I/R (p < 0.05), and this functional improvement was significantly abrogated in hearts expressing LMW FGF2 and Thr17Ala PLB (p < 0.05). CONCLUSION: The findings indicate that LMW FGF2 modulates intracellular calcium handling/cycling via regulatory changes in SR proteins essential for recovery from I/R injury, and thereby protects the heart from post-ischemic cardiac dysfunction.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cardiotônicos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Isquemia Miocárdica/prevenção & controle , Isquemia Miocárdica/fisiopatologia , Fosfoproteínas/metabolismo , Fosfotreonina/metabolismo , Proteômica , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Camundongos , Modelos Biológicos , Peso Molecular , Fosforilação , Proteína Quinase C-alfa/metabolismo , Retículo Sarcoplasmático/metabolismo
2.
Growth Factors ; 38(2): 75-93, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32496882

RESUMO

FGF2 is a potent stimulator of vascular growth; however, even with a deficiency of FGF2 (Fgf2-/-), developmental vessel growth or ischaemia-induced revascularization still transpires. It remains to be elucidated as to what function, if any, FGF2 has during ischaemic injury. Wildtype (WT) or Fgf2-/- mice were subjected to hindlimb ischaemia for up to 42 days. Limb function, vascular growth, inflammatory- and angiogenesis-related proteins, and inflammatory cell infiltration were assessed in sham and ischaemic limbs at various timepoints. Recovery of ischaemic limb function was delayed in Fgf2-/- mice. Yet, vascular growth response to ischaemia was similar between WT and Fgf2-/- hindlimbs. Several angiogenesis- and inflammatory-related proteins (MCP-1, CXCL16, MMPs and PAI-1) were increased in Fgf2-/- ischaemic muscle. Neutrophil or monocyte recruitment/infiltration was elevated in Fgf2-/- ischaemic muscle. In summary, our study indicates that loss of FGF2 induces a pro-inflammatory microenvironment in skeletal muscle which exacerbates ischaemic injury and delays functional limb use.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Traumatismo por Reperfusão/metabolismo , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Membro Posterior/irrigação sanguínea , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regeneração
3.
J Proteome Res ; 12(10): 4268-79, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24016359

RESUMO

Mass spectrometry (MS) techniques to globally profile protein phosphorylation in cellular systems that are relevant to physiological or pathological changes have been of significant interest in biological research. An MS-based strategy utilizing an inexpensive acetone-based peptide-labeling technique known as reductive alkylation by acetone (RABA) for quantitative phosphoproteomics was explored to evaluate its capacity. Because the chemistry for RABA labeling for phosphorylation profiling had not been previously reported, it was first validated using a standard phosphoprotein and identical phosphoproteomes from cardiac tissue extracts. A workflow was then utilized to compare cardiac tissue phosphoproteomes from mouse hearts not expressing FGF2 versus hearts expressing low-molecular-weight fibroblast growth factor-2 (LMW FGF2) to relate low-molecular-weight fibroblast growth factor-2 (LMW FGF2)-mediated cardioprotective phenomena induced by ischemia/reperfusion injury of hearts, with downstream phosphorylation changes in LMW FGF2 signaling cascades. Statistically significant phosphorylation changes were identified at 14 different sites on 10 distinct proteins, including some with mechanisms already established for LMW FGF2-mediated cardioprotective signaling (e.g., connexin-43), some with new details linking LMW FGF2 to the cardioprotective mechanisms (e.g., cardiac myosin binding protein C or cMyBPC), and also several new downstream effectors not previously recognized for cardio-protective signaling by LMW FGF2. Additionally, one of the phosphopeptides, cMyBPC/pSer-282, identified was further verified with site-specific quantification using an SRM (selected reaction monitoring)-based approach that also relies on isotope labeling of a synthetic phosphopeptide with deuterated acetone as an internal standard. Overall, this study confirms that the inexpensive acetone-based peptide labeling can be used in both exploratory and targeted quantification phosphoproteomic studies to identify and verify biologically relevant phosphorylation changes in whole tissues.


Assuntos
Acetona/química , Traumatismo por Reperfusão Miocárdica/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Cromatografia por Troca Iônica , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fosfoproteínas/química , Fosfoproteínas/isolamento & purificação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteoma/isolamento & purificação , Proteômica , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem
4.
J Biol Chem ; 287(53): 44478-89, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23148217

RESUMO

Phosphorylation of tropomyosin (Tm) has been shown to vary in mouse models of cardiac hypertrophy. Little is known about the in vivo role of Tm phosphorylation. This study examines the consequences of Tm dephosphorylation in the murine heart. Transgenic (TG) mice were generated with cardiac specific expression of α-Tm with serine 283, the phosphorylation site of Tm, mutated to alanine. Echocardiographic analysis and cardiomyocyte cross-sectional area measurements show that α-Tm S283A TG mice exhibit a hypertrophic phenotype at basal levels. Interestingly, there are no alterations in cardiac function, myofilament calcium (Ca(2+)) sensitivity, cooperativity, or response to ß-adrenergic stimulus. Studies of Ca(2+) handling proteins show significant increases in sarcoplasmic reticulum ATPase (SERCA2a) protein expression and an increase in phospholamban phosphorylation at serine 16, similar to hearts under exercise training. Compared with controls, the decrease in phosphorylation of α-Tm results in greater functional defects in TG animals stressed by transaortic constriction to induce pressure overload-hypertrophy. This is the first study to investigate the in vivo role of Tm dephosphorylation under both normal and cardiac stress conditions, documenting a role for Tm dephosphorylation in the maintenance of a compensated or physiological phenotype. Collectively, these results suggest that modification of the Tm phosphorylation status in the heart, depending upon the cardiac state/condition, may modulate the development of cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Tropomiosina/metabolismo , Animais , Cálcio/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Feminino , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Fosforilação , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Tropomiosina/genética
5.
Am J Physiol Heart Circ Physiol ; 304(10): H1382-96, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23479264

RESUMO

Among its many biological roles, fibroblast growth factor-2 (FGF2) acutely protects the heart from dysfunction associated with ischemia/reperfusion (I/R) injury. Our laboratory has demonstrated that this is due to the activity of the low molecular weight (LMW) isoform of FGF2 and that FGF2-mediated cardioprotection relies on the activity of protein kinase C (PKC); however, which PKC isoforms are responsible for LMW FGF2-mediated cardioprotection, and their downstream targets, remain to be elucidated. To identify the PKC pathway(s) that contributes to postischemic cardiac recovery by LMW FGF2, mouse hearts expressing only LMW FGF2 (HMWKO) were bred to mouse hearts not expressing PKCα (PKCαKO) or subjected to a selective PKCε inhibitor (εV(1-2)) before and during I/R. Hearts only expressing LMW FGF2 showed significantly improved postischemic recovery of cardiac function following I/R (P < 0.05), which was significantly abrogated in the absence of PKCα (P < 0.05) or presence of PKCε inhibition (P < 0.05). Hearts only expressing LMW FGF2 demonstrated differences in actomyosin ATPase activity as well as increases in the phosphorylation of troponin I and T during I/R compared with wild-type hearts; several of these effects were dependent on PKCα activity. This evidence indicates that both PKCα and PKCε play a role in LMW FGF2-mediated protection from cardiac dysfunction and that PKCα signaling to the contractile apparatus is a key step in the mechanism of LMW FGF2-mediated protection against myocardial dysfunction.


Assuntos
Fator 2 de Crescimento de Fibroblastos/fisiologia , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/fisiopatologia , Miofibrilas/metabolismo , Proteína Quinase C/fisiologia , Actomiosina/metabolismo , Animais , Western Blotting , ATPase de Ca(2+) e Mg(2+)/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Knockout , Peso Molecular , Contração Miocárdica/fisiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fosforilação/fisiologia , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Troponina I/metabolismo , Troponina T/metabolismo
6.
Growth Factors ; 30(2): 124-39, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22304432

RESUMO

Fibroblast growth factor-2 (FGF2) protects the heart from ischemia-reperfusion (I-R) injury via a vast network of protein kinases. In the heart, downstream effectors of these FGF2-triggered signals have not yet been identified. It is hypothesized that nitric oxide (NO) signaling and ATP-sensitive potassium (K(ATP)) channel activity are key effectors of protein kinases activated by FGF2-mediated cardioprotection. Hearts with a cardiac-specific overexpression of FGF2 (FGF2 Tg) were subjected to I-R injury in the absence or the presence of selective inhibitors of NO synthase (NOS) isoforms or sarcolemmal (sarcK(ATP)) and mitochondrial (mitoK(ATP)) K(ATP) channels. Multiple NOS isoforms are necessary for FGF2-mediated cardioprotection, and nitrite levels are significantly reduced in FGF2 Tg hearts upon inhibition of protein kinase C or mitogen-activated protein kinases. Likewise, sarcK(ATP) and mitoK(ATP) channels are important for cardioprotection elicited by endogenous FGF2. These findings suggest that FGF2-induced cardioprotection occurs via protein kinase-NOS pathways as well as K(ATP) channel activity.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Canais KATP/metabolismo , Infarto do Miocárdio/prevenção & controle , Óxido Nítrico/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais , Regulação para Cima , Animais , Ativação Enzimática , Humanos , Camundongos , Infarto do Miocárdio/metabolismo , Óxido Nítrico Sintase/metabolismo , Canais de Potássio/metabolismo , Traumatismo por Reperfusão/metabolismo , Sarcolema/metabolismo
7.
J Mol Cell Cardiol ; 48(6): 1245-54, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20116383

RESUMO

Fibroblast growth factor 2 (FGF2) consists of multiple protein isoforms (low [LMW] and high molecular weight [HMW]), which are localized to different cellular compartments, indicating unique biological activity. We previously showed that the LMW isoform is important in protecting the heart from myocardial dysfunction associated with ischemia-reperfusion (I/R) injury, but the roles of the HMW isoforms remain unknown. To elucidate the role of HMW isoforms in I/R and cardioprotection, hearts from novel mouse models, in which the murine FGF2 HMWs are knocked out (HMWKO) or the human FGF2 24 kDa HMW isoform is overexpressed (HMW Tg) and their wildtype (Wt) or non-transgenic (NTg) cohorts were subjected to an ex vivo work-performing heart model of I/R. There was a significant improvement in post-ischemic recovery of cardiac function in HMWKO hearts (76+/-5%, p<0.05) compared to Wt hearts (55+/-5%), with a corresponding decrease in HMW Tg function (line 20: 38+/-6% and line 28: 33+/-4%, p<0.05) compared to non-transgenic hearts (68+/-9%). FGF2 LMW isoform was secreted from Wt and HMWKO hearts during I/R, and a FGF receptor (FGFR) inhibitor, PD173074 caused a decrease in cardiac function when administered in I/R in Wt and FGF2 HMWKO hearts (p<0.05), indicating that FGFR is involved in FGF2 LMW isoform's biological effect in ischemia-reperfusion injury. Moreover, overexpression of HMW isoform reduced FGFR1 phosphorylation/activation with no further decrease in the phosphorylation state in the presence of the FGFR inhibitor. Overall, our data indicate that HMW isoforms have a detrimental role in the development of post-ischemic myocardial dysfunction.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Creatina Quinase/metabolismo , Coração/fisiologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Peso Molecular , Miocárdio/patologia , Fosforilação , Isoformas de Proteínas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
8.
Circulation ; 120(11 Suppl): S1-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19752352

RESUMO

BACKGROUND: Although remote ischemic stimuli have been shown to elicit cardioprotection against ischemia/reperfusion injury, there is little known about the effects of nonischemic stimuli. We previously described a remote cardioprotective effect of nonischemic surgical trauma (abdominal incision) called remote preconditioning of trauma (RPCT). In the present study, we elucidate mechanisms underlying this phenomenon. METHODS AND RESULTS: We used a murine model of myocardial infarction to evaluate ischemia/reperfusion injury, and either abdominal surgical incision, or application of topical capsaicin, to elicit cardioprotection. We show that the cardioprotective effect of RPCT is initiated by skin nociception, and requires neurogenic signaling involving spinal nerves and activation of cardiac sensory and sympathetic nerves. Our results demonstrate bradykinin-dependent activation and repression, respectively, of PKCepsilon and PKCdelta in myocardium after RPCT, and we show involvement of the K(ATP) channels in cardioprotection. Finally, we show that topical application of capsaicin, which selectively activates C sensory fibers in the skin, mimics the cardioprotective effect of RPCT against myocardial infarction. CONCLUSIONS: Nontraumatic nociceptive preconditioning represents a novel therapeutic strategy for cardioprotection with great potential clinical utility.


Assuntos
Coração/inervação , Precondicionamento Isquêmico/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Dor/fisiopatologia , Proteína Quinase C/metabolismo , Transdução de Sinais , Animais , Apoptose , Capsaicina/farmacologia , Feminino , Canais KATP/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/patologia
9.
J Mol Cell Cardiol ; 47(4): 493-503, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19573531

RESUMO

The opioidergic system, an endogenous stress pathway, modulates cardiac function. Furthermore, opioid peptide and receptor expression is altered in a number of cardiac pathologies. However, whether the response of myocardial opioid receptor signaling is altered in heart failure progression is currently unknown. Elucidating possible alterations in and effects of opioidergic signaling in the failing myocardium is of critical importance as opioids are commonly used for pain management, including in patients at risk for cardiovascular disease. A hamster model of cardiomyopathy and heart failure (Bio14.6) was used to investigate cardiac opioidergic signaling in heart failure development. This study found an augmented negative inotropic and lusitropic response to administration of agonists selective for the kappa opioid receptor and delta opioid receptor in the failing heart that was mediated by a pertussis toxin-sensitive G-protein. The augmented decrease in cardiac function was manifested by increased inhibition of cAMP accumulation and the amplitude of the systolic Ca(2+) transient. Furthermore, increased depression of cardiac function and of two important second messengers, cAMP and intracellular Ca(2+), were independent of changes in cardiac opioid peptide or receptor expression. Thus, the cardiomyopathy-induced failing heart experiences increased cardiac depressant effects following opioid receptor stimulation which could exacerbate diminished cardiac function in end-stage heart failure. As cardiac function is already depressed in heart failure patients, administration of opioids could exacerbate the degree of cardiac dysfunction and worsen disease progression.


Assuntos
Insuficiência Cardíaca/metabolismo , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/sangue , Cardiomegalia/complicações , Cardiomegalia/fisiopatologia , Cardiomiopatias/sangue , Cardiomiopatias/complicações , Cardiomiopatias/fisiopatologia , Cricetinae , AMP Cíclico/metabolismo , Fentanila/administração & dosagem , Fentanila/farmacologia , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Testes de Função Cardíaca , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Técnicas In Vitro , Contração Miocárdica/efeitos dos fármacos , Peptídeos Opioides/sangue , Toxina Pertussis/farmacologia , Quinolinas/farmacologia , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos , Sístole/efeitos dos fármacos
10.
Circulation ; 113(7): 995-1004, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16476846

RESUMO

BACKGROUND: Phospholamban (PLN) is an inhibitor of the Ca2+ affinity of sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA2). The amino acid sequence of PLN is highly conserved, and although all species contain asparagine (Asn), human PLN is unique in containing lysine (Lys) at amino acid 27. METHODS AND RESULTS: Human PLN was introduced in the null background. Expression of human PLN, at similar levels to mouse wild-type PLN, resulted in significant decreases in the affinity of SERCA2 for Ca2+, attributed to unique spatial conformation of this PLN form and increases in its monomeric active unit compared with mouse PLN. The increased inhibition by human PLN was associated with attenuated cardiac contractility in the intact-animal, organ, and cardiomyocyte levels and with depressed calcium kinetics. These inhibitory effects could not be fully reversed even on maximal isoproterenol stimulation. There were no alterations in the expression levels of SERCA2, calsequestrin, ryanodine receptor, and FKBP12, although the sodium/calcium exchanger and the L-type Ca2+ channel expression levels were upregulated. The depressed function resulted in increased heart/body weight ratios and phosphorylation levels of Akt, p38, and Erk1/2. CONCLUSIONS: Human PLN may play a more inhibitory role than that of other species in Ca2+ cycling. Expression of human PLN in the mouse is compensated by alterations in Ca2+-handling proteins and cardiac remodeling in an effort to normalize cardiac contractility. Thus, the unique amino acid sequence of human PLN may be critical in maintaining a high cardiac reserve, which is of paramount importance in the regulation of human cardiac function.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Cardiomegalia/etiologia , Sequência de Aminoácidos , Animais , Arginina , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Humanos , Cinética , Lisina , Camundongos , Camundongos Knockout , Camundongos Transgênicos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Especificidade da Espécie
11.
J Clin Invest ; 109(6): 787-96, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11901187

RESUMO

Angiotensin II (Ang II), a potent hypertrophic stimulus, causes significant increases in TGFb1 gene expression. However, it is not known whether there is a causal relationship between increased levels of TGF-beta1 and cardiac hypertrophy. Echocardiographic analysis revealed that TGF-beta1-deficient mice subjected to chronic subpressor doses of Ang II had no significant change in left ventricular (LV) mass and percent fractional shortening during Ang II treatment. In contrast, Ang II-treated wild-type mice showed a >20% increase in LV mass and impaired cardiac function. Cardiomyocyte cross-sectional area was also markedly increased in Ang II-treated wild-type mice but unchanged in Ang II-treated TGF-beta1-deficient mice. No significant levels of fibrosis, mitotic growth, or cytokine infiltration were detected in Ang II-treated mice. Atrial natriuretic factor expression was approximately 6-fold elevated in Ang II-treated wild-type, but not TGF-beta1-deficient mice. However, the alpha- to beta-myosin heavy chain switch did not occur in Ang II-treated mice, indicating that isoform switching is not obligatorily coupled with hypertrophy or TGF-beta1. The Ang II effect on hypertrophy was shown not to result from stimulation of the endogenous renin-angiotensis system. These results indicate that TGF-beta1 is an important mediator of the hypertrophic growth response of the heart to Ang II.


Assuntos
Angiotensina II/farmacologia , Cardiomegalia/fisiopatologia , Coração/efeitos dos fármacos , Miocárdio/citologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Tamanho Celular , Ecocardiografia , Coração/fisiologia , Hemodinâmica , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1
12.
Circ Res ; 96(7): 756-66, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15746443

RESUMO

Abnormal calcium cycling, characteristic of experimental and human heart failure, is associated with impaired sarcoplasmic reticulum calcium uptake activity. This reflects decreases in the cAMP-pathway signaling and increases in type 1 phosphatase activity. The increased protein phosphatase 1 activity is partially due to dephosphorylation and inactivation of its inhibitor-1, promoting dephosphorylation of phospholamban and inhibition of the sarcoplasmic reticulum calcium-pump. Indeed, cardiac-specific expression of a constitutively active inhibitor-1 results in selective enhancement of phospholamban phosphorylation and augmented cardiac contractility at the cellular and intact animal levels. Furthermore, the beta-adrenergic response is enhanced in the transgenic hearts compared with wild types. On aortic constriction, the hypercontractile cardiac function is maintained, hypertrophy is attenuated and there is no decompensation in the transgenics compared with wild-type controls. Notably, acute adenoviral gene delivery of the active inhibitor-1, completely restores function and partially reverses remodeling, including normalization of the hyperactivated p38, in the setting of pre-existing heart failure. Thus, the inhibitor 1 of the type 1 phosphatase may represent an attractive new therapeutic target.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Insuficiência Cardíaca/prevenção & controle , Contração Miocárdica , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteínas/fisiologia , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , ATPases Transportadoras de Cálcio/fisiologia , Cardiomegalia/etiologia , Cardiomegalia/prevenção & controle , Terapia Genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Camundongos , Camundongos Transgênicos , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/fisiologia , Fosforilação , Proteína Fosfatase 1 , Proteínas/genética , Ratos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Remodelação Ventricular
13.
Cardiovasc Toxicol ; 7(3): 165-77, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17901560

RESUMO

Although studies have shown that endothelial nitric oxide synthase (eNOS) homozygous knockout mice (eNOS-/-) develop left ventricular (LV) hypertrophy, well compensated at least to 24 wks, uncertainty still exists as to the cardiac functional and molecular mechanistic consequences of eNOS deficiency at later time-points. To bridge the gap in existent data, we examined whole hearts from eNOS-/- and age-matched wild-type (WT) control mice ranging in age from 18 to 52 wks for macroscopic and microscopic histopathology, LV mRNA and protein expression using RNA Dot blots and Western blots, respectively, and LV function using isolated perfused work-performing heart preparations. Heart weight to body weight (HW/BW in mg/g) ratio increased significantly as eNOS-/- mice aged (82.2%, P < 0.001). Multi-focal replacement fibrosis and myocyte degeneration/death were first apparent in eNOS-/- mouse hearts at 40 wks. Progressive increases in LV atrial natriuretic factor (ANF) and alpha-skeletal actin mRNA levels both correlated significantly with increasing HW/BW ratio in aged eNOS-/- mice (r = 0.722 and r = 0.648, respectively; P < 0.001). At 52 wks eNOS-/- mouse hearts exhibited basal LV hypercontractility yet blunted beta adrenergic receptor (betaAR) responsiveness that coincided with a significant reduction in the LV ratio of phospholamban to sarcoplasmic reticulum Ca2+-ATPase-2a protein levels and was preceded by a significant upregulation in LV steady-state mRNA and protein levels of the 28 kDa membrane-bound form of tumor necrosis factor-alpha. We conclude that absence of eNOS in eNOS-/- mice results in a progressive concentric hypertrophic cardiac phenotype that is functionally compensated with decreased betaAR responsiveness, and is associated with a potential cytokine-mediated alteration of calcium handling protein expression.


Assuntos
Cardiomegalia/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Fator Natriurético Atrial/genética , Fator Natriurético Atrial/metabolismo , Pressão Sanguínea/genética , Peso Corporal , Cardiomegalia/genética , Cardiomegalia/patologia , Regulação Enzimológica da Expressão Gênica , Inativação Gênica , Frequência Cardíaca/genética , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III , Tamanho do Órgão , Perfusão , RNA Mensageiro/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Fator de Necrose Tumoral alfa/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia
14.
Cytokine Growth Factor Rev ; 14(5): 391-407, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12948523

RESUMO

Transforming growth factor betas (TGFbetas) are pleiotropic cytokines involved in many biological processes. Genetic engineering and tissue explanation studies have revealed specific non-overlapping roles for TGFbeta ligands and their signaling molecules in development and in normal function of the cardiovascular system in the adult. In the embryo, TGFbetas appear to be involved in epithelial-mesenchymal transformations (EMT) during endocardial cushion formation, and in epicardial epithelial-mesenchymal transformations essential for coronary vasculature, ventricular myocardial development and compaction. In the adult, TGFbetas are involved in cardiac hypertrophy, vascular remodeling and regulation of the renal renin-angiotensin system. The evidence for TGFbeta activities during cardiovascular development and physiologic function will be given and areas which need further investigation will be discussed.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Coração , Miocárdio , Fator de Crescimento Transformador beta/metabolismo , Animais , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Embrião não Mamífero , Epitélio/fisiologia , Coração/anatomia & histologia , Coração/embriologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Rim/fisiologia , Ligantes , Mesoderma/fisiologia , Miocárdio/citologia , Miocárdio/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/genética
15.
Cardiovasc Res ; 113(13): 1585-1602, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016740

RESUMO

AIMS: Fibroblast growth factor 1 (FGF1), a heparin/heparan sulfate-binding growth factor, is a potent cardioprotective agent against myocardial infarction (MI). The impact of heparin, the standard of care for MI patients entering the emergency room, on cardioprotective effects of FGF1 is unknown, however. METHODS AND RESULTS: To address this, a rat model of MI was employed to compare cardioprotective potentials (lower infarct size and improve post-ischemic function) of native FGF1 and an engineered FGF1 (FGF1ΔHBS) with reduced heparin-binding affinity when given at the onset of reperfusion in the absence or presence of heparin. FGF1 and FGF1ΔHBS did not alter heparin's anticoagulant properties. Treatment with heparin alone or native FGF1 significantly reduced infarct size compared to saline (P < 0.05). Surprisingly, treatment with FGF1ΔHBS markedly lowered infarct size compared to FGF1 (P < 0.05). Both native and modified FGF1 restored contractile and relaxation function (P < 0.05 versus saline or heparin). Furthermore, FGF1ΔHBS had greater improvement in cardiac function compared to FGF1 (P < 0.05). Heparin negatively impacted the cardioprotective effects (infarct size, post-ischemic recovery of function) of FGF1 (P < 0.05) but not of FGF1ΔHBS. Heparin also reduced the biodistribution of FGF1, but not FGF1ΔHBS, to the left ventricle. FGF1 and FGF1ΔHBS bound and triggered FGFR1-induced downstream activation of ERK1/2 (P < 0.05); yet, heparin co-treatment decreased FGF1-produced ERK1/2 activation, but not that activated by FGF1ΔHBS. CONCLUSION: These findings demonstrate that modification of the heparin-binding region of FGF1 significantly improves the cardioprotective efficacy, even in the presence of heparin, identifying a novel FGF ligand available for therapeutic use in ischemic heart disease.


Assuntos
Fármacos Cardiovasculares/farmacologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Heparina/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacocinética , Heparina/metabolismo , Humanos , Ligantes , Masculino , Mutação , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Ligação Proteica , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Recuperação de Função Fisiológica , Distribuição Tecidual , Função Ventricular Esquerda/efeitos dos fármacos
16.
Circulation ; 108(25): 3140-8, 2003 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-14656920

RESUMO

BACKGROUND: Preconditioning the heart before an ischemic insult has been shown to protect against contractile dysfunction, arrhythmias, and infarction. Pharmacological studies have suggested that fibroblast growth factor-2 (FGF2) is involved in cardioprotection. However, because of the number of FGFs expressed in the heart and the promiscuity of FGF ligand-receptor interactions, the specific role of FGF2 during ischemia-reperfusion injury remains unclear. METHODS AND RESULTS: FGF2-deficient (Fgf2 knockout) mice and mice with a cardiac-specific overexpression of all 4 isoforms of human FGF2 (FGF2 transgenic [Tg]) were compared with wild-type mice to test whether endogenous FGF2 elicits cardioprotection. An ex vivo work-performing heart model of ischemia was developed in which murine hearts were subjected to 60 minutes of low-flow ischemia and 120 minutes of reperfusion. Preischemic contractile function was similar among the 3 groups. After ischemia-reperfusion, contractile function of Fgf2 knockout hearts recovered to 27% of its baseline value compared with a 63% recovery in wild-type hearts (P<0.05). In FGF2 Tg hearts, an 88% recovery of postischemic function occurred (P<0.05). Myocardial infarct size was also reduced in FGF2 Tg hearts compared with wild-type hearts (13% versus 30%, P<0.05). There was a 2-fold increase in FGF2 release from Tg hearts compared with wild-type hearts (P<0.05). No significant alterations in coronary flow or capillary density were detected in any of the groups, implying that the protective effect of FGF2 is not mediated by coronary perfusion changes. CONCLUSIONS: These results provide evidence that endogenous FGF2 plays a significant role in the cardioprotective effect against ischemia-reperfusion injury.


Assuntos
Fator 2 de Crescimento de Fibroblastos/fisiologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/metabolismo , Animais , Circulação Coronária , Citoproteção , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo
17.
PLoS One ; 7(11): e48713, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23144938

RESUMO

Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2) plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl) mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl) mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.


Assuntos
Cardiomegalia/etiologia , Fatores de Transcrição Forkhead/genética , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/fisiologia , Actinas/genética , Actinas/metabolismo , Fatores Etários , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Proliferação de Células , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose/genética , Fibrose/patologia , Proteína Forkhead Box M1 , Regulação da Expressão Gênica no Desenvolvimento , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Vimentina/genética , Vimentina/metabolismo
18.
Mol Cell Pharmacol ; 2(4): 143-154, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21274419

RESUMO

Fibroblast growth factor 2 (basic FGF or FGF2) has been shown to affect growth and differentiation in some tissues and to be required for cardiac hypertrophy in vivo. FGF2 has been shown in vitro to signal through the mitogen-activated protein kinase (MAPK) to affect cell survival and growth. To ascertain the role of FGF2 in cardiac hypertrophy, wildtype, Fgf2 knockout, non-transgenic, and FGF2 transgenic mice were treated with isoproterenol or saline via subcutaneous mini-osmotic pump implants to induce a hypertrophic response to ß-adrenergic stimulation. Fgf2 knockout hearts are protected from isoproterenol-induced cardiac hypertrophy; whereas, FGF2 transgenic hearts show exacerbated cardiac hypertrophy as assessed by heart weight-to-body weight ratios and myocyte cross-sectional area. Echocardiography reveals significantly decreased fractional shortening in isoproterenol-treated FGF2 transgenic mice but not in Fgf2 knockout mice suggesting that FGF2 mediates the maladaptive cardiac dysfunction seen in cardiac hypertrophy induced by isoproterenol. Western blot analysis also reveals alterations in MAPK signaling in Fgf2 knockout and FGF2 transgenic hearts subjected to isoproterenol treatment, suggesting that this cascade mediates FGF2's pro-hypertrophic effect. Pharmacologic inhibition of extracellular signal-regulated kinase (ERK) signaling results in an attenuated hypertrophic response in isoproterenol-treated FGF2 transgenic mice, but this response is not seen with p38 mitogen-activated protein kinase (p38) pathway inhibition, suggesting that FGF2 activation of ERK but not p38 is necessary for FGF2's role in the mediation of cardiac hypertrophy.

19.
Am J Physiol Heart Circ Physiol ; 296(4): H967-75, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19181965

RESUMO

Opioids/opiates are commonly administered to alleviate pain, unload the heart, or decrease breathlessness in patients with advanced heart failure. As such, it is important to evaluate whether the myocardial opioidergic system is altered in cardiac disease. A hamster model of spontaneous hypertension was investigated before the development of hypertension (1 mo of age) and in the hypertensive state (10 mo of age) to evaluate the effect of prolonged hypertension on myocardial opioidergic activity. Plasma beta-endorphin was decreased before the development of hypertension and in the hypertensive state (P < 0.05). There was no change in cardiac beta-endorphin content at either time point. No differences were detected in cardiac or plasma dynorphin A, Met-enkephalin, or Leu-enkephalin, or in cardiac peptide expression of kappa- or delta-opioid receptors. mu-Opioid receptor was not detected in either model. To determine how hypertension affects myocardial opioid signaling, the ex vivo work-performing heart was used to assess the cardiac response to opioid administration in healthy hearts and those subjected to chronic hypertension. Agonists selective for the kappa- and delta-opioid receptors, but not mu-opioid receptors, induced a concentration-dependent decrease in cardiac function. The decrease in left ventricular systolic pressure on administration of the kappa-opioid receptor-selective agonist, U50488H, was attenuated in hearts from hamsters subjected to chronic, untreated hypertension (P < 0.05) compared with control. These results show that peripheral and myocardial opioid expression and signaling are altered in hypertension.


Assuntos
Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miocárdio/metabolismo , Receptores Opioides kappa/metabolismo , Sístole/fisiologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida , Animais , Anti-Hipertensivos , Benzamidas/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Cricetinae , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Dinorfinas/metabolismo , Encefalina Leucina , Encefalina Metionina/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Piperazinas/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides delta/efeitos dos fármacos , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/efeitos dos fármacos , Remodelação Ventricular/fisiologia , beta-Endorfina/sangue
20.
Dev Dyn ; 238(2): 249-64, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18773489

RESUMO

Fibroblast growth factor 2 (FGF2) consists of multiple protein isoforms (low molecular weight, LMW, and high molecular weight, HMW) produced by alternative translation from the Fgf2 gene. These protein isoforms are localized to different cellular compartments, indicating unique biological activity. FGF2 isoforms in the heart have distinct roles in many pathological circumstances in the heart including cardiac hypertrophy, ischemia-reperfusion injury, and atherosclerosis. These studies suggest distinct biological activities of FGF2 LMW and HMW isoforms both in vitro and in vivo. Yet, due to the limitations that only the recombinant FGF2 LMW isoform is readily available and that the FGF2 antibody is nonspecific with regards to its isoforms, much remains to be determined regarding the role(s) of the FGF2 LMW and HMW isoforms in cellular behavior and in cardiovascular development and pathophysiology. This review summarizes the activities of LMW and HMW isoforms of FGF2 in cardiovascular development and disease.


Assuntos
Sistema Cardiovascular/embriologia , Fator 2 de Crescimento de Fibroblastos/fisiologia , Neovascularização Patológica , Animais , Aorta Torácica/embriologia , Aorta Torácica/crescimento & desenvolvimento , Aorta Torácica/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/crescimento & desenvolvimento , Sistema Cardiovascular/patologia , Fator 2 de Crescimento de Fibroblastos/genética , Valvas Cardíacas/embriologia , Valvas Cardíacas/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA