Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 238(3): 952-970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36694296

RESUMO

Wildfires are a global crisis, but current fire models fail to capture vegetation response to changing climate. With drought and elevated temperature increasing the importance of vegetation dynamics to fire behavior, and the advent of next generation models capable of capturing increasingly complex physical processes, we provide a renewed focus on representation of woody vegetation in fire models. Currently, the most advanced representations of fire behavior and biophysical fire effects are found in distinct classes of fine-scale models and do not capture variation in live fuel (i.e. living plant) properties. We demonstrate that plant water and carbon dynamics, which influence combustion and heat transfer into the plant and often dictate plant survival, provide the mechanistic linkage between fire behavior and effects. Our conceptual framework linking remotely sensed estimates of plant water and carbon to fine-scale models of fire behavior and effects could be a critical first step toward improving the fidelity of the coarse scale models that are now relied upon for global fire forecasting. This process-based approach will be essential to capturing the influence of physiological responses to drought and warming on live fuel conditions, strengthening the science needed to guide fire managers in an uncertain future.


Assuntos
Incêndios , Incêndios Florestais , Plantas , Fenômenos Fisiológicos Vegetais , Água , Carbono , Ecossistema
2.
Ecol Evol ; 12(8): e9161, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36035267

RESUMO

The Jemez Mountains salamander (Plethodon neomexicanus; hereafter JMS) is an endangered salamander restricted to the Jemez Mountains in north-central New Mexico, United States. This strictly terrestrial and lungless species requires moist surface conditions for activities such as mating and foraging. Threats to its current habitat include fire suppression and ensuing severe fires, changes in forest composition, habitat fragmentation, and climate change. Forest composition changes resulting from reduced fire frequency and increased tree density suggest that its current aboveground habitat does not mirror its historically successful habitat regime. However, because of its limited habitat area and underground behavior, we hypothesized that geology and topography might play a significant role in the current distribution of the salamander. We modeled the distribution of the JMS using a machine learning algorithm to assess how geology, topography, and climate variables influence its distribution. The best habitat suitability model indicates that geology type and maximum winter temperature (November to March) were most important in predicting the distribution of the salamander (23.5% and 50.3% permutation importance, respectively). Minimum winter temperature was also an important variable (21.4%), suggesting this also plays a role in salamander habitat. Our habitat suitability map reveals low uncertainty in model predictions, and we found slight discrepancies between the designated critical habitat and the most suitable areas for the JMS. Because geological features are important to its distribution, we recommend that geological and topographical data are considered, both during survey design and in the description of localities of JMS records once detected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA