RESUMO
It is well established that axonal Neuregulin 1 type 3 (NRG1t3) regulates developmental myelin formation as well as EGR2-dependent gene activation and lipid synthesis. However, in peripheral neuropathy disease context, elevated axonal NRG1t3 improves remyelination and myelin sheath thickness without increasing Egr2 expression or activity, and without affecting the transcriptional activity of canonical myelination genes. Surprisingly, Pmp2, encoding for a myelin fatty acid binding protein, is the only gene whose expression increases in Schwann cells following overexpression of axonal NRG1t3. Here, we demonstrate PMP2 expression is directly regulated by NRG1t3 active form, following proteolytic cleavage. Then, using a transgenic mouse model overexpressing axonal NRG1t3 (NRG1t3OE) and knocked out for PMP2, we demonstrate that PMP2 is required for NRG1t3-mediated remyelination. We demonstrate that the sustained expression of Pmp2 in NRG1t3OE mice enhances the fatty acid uptake in sciatic nerve fibers and the mitochondrial ATP production in Schwann cells. In sum, our findings demonstrate that PMP2 is a direct downstream mediator of NRG1t3 and that the modulation of PMP2 downstream NRG1t3 activation has distinct effects on Schwann cell function during developmental myelination and remyelination.
Assuntos
Bainha de Mielina , Remielinização , Camundongos , Animais , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Nervo Isquiático/metabolismo , Camundongos Transgênicos , Trifosfato de Adenosina/metabolismoRESUMO
Charcot-Marie-Tooth (CMT) neuropathies are a group of genetic disorders that affect the peripheral nervous system with heterogeneous pathogenesis and no available treatment. Axonal neuregulin 1 type III (Nrg1TIII) drives peripheral nerve myelination by activating downstream signaling pathways such as PI3K/Akt and MAPK/Erk that converge on master transcriptional regulators of myelin genes, such as Krox20. We reasoned that modulating Nrg1TIII activity may constitute a general therapeutic strategy to treat CMTs that are characterized by reduced levels of myelination. Here we show that genetic overexpression of Nrg1TIII ameliorates neurophysiological and morphological parameters in a mouse model of demyelinating CMT1B, without exacerbating the toxic gain-of-function that underlies the neuropathy. Intriguingly, the mechanism appears not to be related to Krox20 or myelin gene upregulation, but rather to a beneficial rebalancing in the stoichiometry of myelin lipids and proteins. Finally, we provide proof of principle that stimulating Nrg1TIII signaling, by pharmacological suppression of the Nrg1TIII inhibitor tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17), also ameliorates the neuropathy. Thus, modulation of Nrg1TIII by TACE/ADAM17 inhibition may represent a general treatment for hypomyelinating neuropathies.
Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/etiologia , Doença de Charcot-Marie-Tooth/metabolismo , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Neuregulina-1/metabolismo , Transdução de Sinais , Animais , Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Fenômenos Eletrofisiológicos , Gânglios Espinais/metabolismo , Expressão Gênica , Metabolismo dos Lipídeos , Camundongos , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Neuregulina-1/genética , Células de Schwann/metabolismoRESUMO
Myelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 (NRG1) type III regulate Schwann cell fate and myelination. Here we ask if modulating NRG1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN). Using a mouse model of CHN, we improved the myelination defects by early overexpression of NRG1 type III. Surprisingly, the improvement was independent from the upregulation of Egr2 or essential myelin genes. Rather, we observed the activation of MAPK/ERK and other myelin genes such as peripheral myelin protein 2 and oligodendrocyte myelin glycoprotein. We also confirmed that the permanent activation of MAPK/ERK in Schwann cells has detrimental effects on myelination. Our findings demonstrate that the modulation of axon-to-glial NRG1 type III signaling has beneficial effects and improves myelination defects during development in a model of CHN.
Assuntos
Bainha de Mielina/metabolismo , Neuregulina-1/genética , Neuregulina-1/fisiologia , Potenciais de Ação , Animais , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Técnicas de Introdução de Genes/métodos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Transgênicos , Proteínas Quinases Ativadas por Mitógeno/genética , Neuregulina-1/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Charcot-Marie-Tooth disease 1 A (CMT1A) is caused by an intrachromosomal duplication of the gene encoding for PMP22 leading to peripheral nerve dysmyelination, axonal loss, and progressive muscle weakness. No therapy is available. PXT3003 is a low-dose combination of baclofen, naltrexone, and sorbitol which has been shown to improve disease symptoms in Pmp22 transgenic rats, a bona fide model of CMT1A disease. However, the superiority of PXT3003 over its single components or dual combinations have not been tested. Here, we show that in a dorsal root ganglion (DRG) co-culture system derived from transgenic rats, PXT3003 induced myelination when compared to its single and dual components. Applying a clinically relevant ("translational") study design in adult male CMT1A rats for 3 months, PXT3003, but not its dual components, resulted in improved performance in behavioral motor and sensory endpoints when compared to placebo. Unexpectedly, we observed only a marginally increased number of myelinated axons in nerves from PXT3003-treated CMT1A rats. However, in electrophysiology, motor latencies correlated with increased grip strength indicating a possible effect of PXT3003 on neuromuscular junctions (NMJs) and muscle fiber pathology. Indeed, PXT3003-treated CMT1A rats displayed an increased perimeter of individual NMJs and a larger number of functional NMJs. Moreover, muscles of PXT3003 CMT1A rats displayed less neurogenic atrophy and a shift toward fast contracting muscle fibers. We suggest that ameliorated motor function in PXT3003-treated CMT1A rats result from restored NMJ function and muscle innervation, independent from myelination.
Assuntos
Baclofeno/administração & dosagem , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doenças Desmielinizantes/tratamento farmacológico , Naltrexona/administração & dosagem , Junção Neuromuscular/efeitos dos fármacos , Sorbitol/administração & dosagem , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Técnicas de Cocultura , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/fisiopatologia , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Masculino , Proteínas da Mielina/genética , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Junção Neuromuscular/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos TransgênicosRESUMO
C-type synaptic boutons (C-boutons) provide cholinergic afferent input to spinal cord motor neurons (MNs), which display an endoplasmic reticulum (ER)-related subsurface cistern (SSC) adjacent to their postsynaptic membrane. A constellation of postsynaptic proteins is clustered at C-boutons, including M2 muscarinic receptors, potassium channels, and σ-1 receptors. In addition, we previously found that neuregulin (NRG)1 is associated with C-boutons at postsynaptic SSCs, whereas its ErbB receptors are located in the presynaptic compartment. C-bouton-mediated regulation of MN excitability has been implicated in MN disease, but NRG1-mediated functions and the impact of various pathologic conditions on C-bouton integrity have not been studied in detail. Here, we investigated changes in C-boutons after electrical stimulation, pharmacological treatment, and peripheral nerve axotomy. SSC-linked NRG1 clusters were severely disrupted in acutely stressed MNs and after tunicamycin-induced ER stress. In axotomized MNs, C-bouton loss occurred in concomitance with microglial recruitment and was prevented by the ER stress inhibitor salubrinal. Activated microglia displayed a positive chemotaxis to C-boutons. Analysis of transgenic mice overexpressing NRG1 type I and type III isoforms in MNs indicated that NRG1 type III acts as an organizer of SSC-like structures, whereas NRG1 type I promotes synaptogenesis of presynaptic cholinergic terminals. Moreover, MN-derived NRG1 signals may regulate the activity of perineuronal microglial cells. Together, these data provide new insights into the molecular and cellular pathology of C-boutons in MN injury and suggest that distinct NRG1 isoform-mediated signaling functions regulate the complex matching between pre- and postsynaptic C-bouton elements.-Salvany, S., Casanovas, A., Tarabal, O., Piedrafita, L., Hernández, S., Santafé, M., Soto-Bernardini, M. C., Calderó, J., Schwab, M. H., Esquerda, J. E. Localization and dynamic changes of neuregulin-1 at C-type synaptic boutons in association with motor neuron injury and repair.
Assuntos
Células do Corno Anterior/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Regeneração Nervosa/fisiologia , Neuregulina-1/fisiologia , Terminações Pré-Sinápticas/fisiologia , Nervo Isquiático/lesões , Animais , Axotomia , Fibras Colinérgicas/fisiologia , Cinamatos/farmacologia , Estimulação Elétrica , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático Liso/fisiologia , Retículo Endoplasmático Liso/ultraestrutura , Camundongos , Camundongos Transgênicos , Microglia/fisiologia , Compressão Nervosa , Neuregulina-1/genética , Terminações Pré-Sinápticas/efeitos dos fármacos , Isoformas de Proteínas/fisiologia , Nervo Isquiático/fisiologia , Transdução de Sinais/fisiologia , Frações Subcelulares/química , Tioureia/análogos & derivados , Tioureia/farmacologia , Tunicamicina/toxicidade , Vacúolos/metabolismo , Vacúolos/ultraestruturaRESUMO
Synaptic connections in the nervous system are rearranged during development and in adulthood as a feature of growth, plasticity, aging, and disease. Glia are implicated as active participants in these changes. Here we investigated a signal that controls the participation of peripheral glia, the terminal Schwann cells (SCs), at the neuromuscular junction (NMJ) in mice. Transgenic manipulation of the levels of membrane-tethered neuregulin1 (NRG1-III), a potent activator of SCs normally presented on motor axons, alters the rate of loss of motor inputs at NMJs during developmental synapse elimination. In addition, NMJs of adult transgenic mice that expressed excess axonal NRG1-III exhibited continued remodeling, in contrast to the more stable morphologies of controls. In fact, synaptic SCs of these adult mice with NRG1-III overexpression exhibited behaviors evident in wild type neonates during synapse elimination, including an affinity for the postsynaptic myofiber surface and phagocytosis of nerve terminals. Given that levels of NRG1-III expression normally peak during the period of synapse elimination, our findings identify axon-tethered NRG1 as a molecular determinant for SC-driven neuromuscular synaptic plasticity.
Assuntos
Neurônios Motores/fisiologia , Neuregulina-1/fisiologia , Junção Neuromuscular/ultraestrutura , Plasticidade Neuronal/fisiologia , Células de Schwann/fisiologia , Sinapses/fisiologia , Processamento Alternativo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Animais Recém-Nascidos , Ácido Aspártico Endopeptidases/genética , Axônios/química , Axônios/fisiologia , Dosagem de Genes , Heterozigoto , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios Motores/química , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Músculos do Pescoço/crescimento & desenvolvimento , Músculos do Pescoço/inervação , Neuregulina-1/genética , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Fagocitose/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Receptores Colinérgicos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Sinapses/ultraestruturaRESUMO
Establishment of long-range fiber tracts by neocortical projection neurons is fundamental for higher brain functions. The molecular control of axon tract formation, however, is still poorly understood. Here, we have identified basic helix-loop-helix (bHLH) transcription factors Neurod2 and Neurod6 as key regulators of fasciculation and targeted axogenesis in the mouse neocortex. In Neurod2/6 double-mutant mice, callosal axons lack expression of the cell adhesion molecule Contactin2, defasciculate in the subventricular zone, and fail to grow toward the midline without forming Probst bundles. Instead, mutant axons overexpress Robo1 and follow random trajectories into the ipsilateral cortex. In contrast to long-range axogenesis, generation and maintenance of pyramidal neurons and initial axon outgrowth are grossly normal, suggesting that these processes are under distinct transcriptional control. Our findings define a new stage in corpus callosum development and demonstrate that neocortical projection neurons require transcriptional specification by neuronal bHLH proteins to execute an intrinsic program of remote connectivity.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Córtex Cerebral/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Animais , Animais Recém-Nascidos/fisiologia , Axônios/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Contactina 2/genética , Contactina 2/fisiologia , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/fisiologia , Eletroporação , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Genótipo , Glutamatos/fisiologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Microdissecção e Captura a Laser , Camundongos , Fibras Nervosas/fisiologia , Proteínas do Tecido Nervoso/genética , Vias Neurais/citologia , Vias Neurais/crescimento & desenvolvimento , Neurogênese/fisiologia , Reação em Cadeia da Polimerase , Receptores Imunológicos/genética , Receptores Imunológicos/fisiologia , Sinapses/fisiologia , Proteínas RoundaboutRESUMO
To study the function of individual neurons that are embedded in a complex neural network is difficult in mice. Conditional mutagenesis permits the spatiotemporal control of gene expression including the ablation of cells by toxins. To direct expression of a tamoxifen-inducible variant of Cre recombinase (CreERT2) selectively to cortical neurons, we replaced the coding region of the murine Nex1 gene by CreERT2 cDNA via homologous recombination in embryonic stem cells. When injected with tamoxifen, adult NEX-CreERT2 mice induced reporter gene expression exclusively in projection neurons of the neocortex and hippocampus. By titrating the tamoxifen dosage, we achieved recombination in single cells, which allowed multiphoton imaging of neocortical neurons in live mice. When hippocampal projection neurons were genetically ablated by induced expression of diphteria toxin, within 20 days the inflammatory response included the infiltration of CD3+ T cells. This marks a striking difference from similar studies, in which dying oligodendrocytes failed to recruit cells of the adaptive immune system.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Toxina Diftérica/intoxicação , Integrases/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/fisiologia , Proteínas Recombinantes/metabolismo , Tamoxifeno/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sobrevivência Celular/efeitos dos fármacos , Genes Reporter , Integrases/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Venenos/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Proteínas Recombinantes/genéticaRESUMO
Neuregulin 1 (NRG1) is a growth factor involved in neurodevelopment and plasticity. It is a schizophrenia candidate gene, and hippocampal expression of the NRG1 type I isoform is increased in the disorder. We have studied transgenic mice overexpressing NRG1 type I (NRG1(tg-type I)) and their wild-type littermates and measured hippocampal electrophysiological and behavioral phenotypes. Young NRG1(tg-type I) mice showed normal memory performance, but in older NRG1(tg-type I) mice, hippocampus-dependent spatial working memory was selectively impaired. Hippocampal slice preparations from NRG1(tg-type I) mice exhibited a reduced frequency of carbachol-induced gamma oscillations and an increased tendency to epileptiform activity. Long-term potentiation in NRG1(tg-type I) mice was normal. The results provide evidence that NRG1 type I impacts on hippocampal function and circuitry. The effects are likely mediated via inhibitory interneurons and may be relevant to the involvement of NRG1 in schizophrenia. However, the findings, in concert with those from other genetic and pharmacological manipulations of NRG1, emphasize the complex and pleiotropic nature of the gene, even with regard to a single isoform.
Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Memória de Curto Prazo/fisiologia , Neuregulina-1/metabolismo , Animais , Células Cultivadas , Hipocampo/citologia , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Regulação para Cima/fisiologiaRESUMO
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons (MNs). Neuregulin-1 (NRG1) is a pleiotropic growth factor that has been shown to be potentially valuable for ALS when supplemented by means of viral-mediated gene therapy. However, these results are inconsistent with other reports. An alternative approach for investigating the therapeutic impact of NRG1 on ALS is the use of transgenic mouse lines with genetically defined NRG1 overexpression. Here, we took advantage of a mouse line with NRG1 type III overexpression in spinal cord α motor neurons (MN) to determine the impact of steadily enhanced NRG1 signalling on mutant superoxide dismutase 1 (SOD1)-induced disease. The phenotype of SOD1G93A-NRG1 double transgenic mice was analysed in detail, including neuropathology and extensive behavioural testing. At least 3 animals per condition and sex were histopathologically assessed, and a minimum of 10 mice per condition and sex were clinically evaluated. The accumulation of misfolded SOD1 (mfSOD1), MN degeneration, and a glia-mediated neuroinflammatory response are pathological hallmarks of ALS progression in SOD1G93A mice. None of these aspects was significantly improved when examined in double transgenic NRG1-SOD1G93A mice. In addition, behavioural testing revealed that NRG1 type III overexpression did not affect the survival of SOD1G93A mice but accelerated disease onset and worsened the motor phenotype.
Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Neuregulina-1/genética , Doenças Neurodegenerativas/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Neurônios Motores/patologia , Camundongos TransgênicosRESUMO
Intercellular communication between axons and Schwann cells is critical for attaining the complex morphological steps necessary for axon maturation. In the early onset motor neuron disease spinal muscular atrophy (SMA), many motor axons are not ensheathed by Schwann cells nor grow sufficiently in radial diameter to become myelinated. These developmentally arrested motor axons are dysfunctional and vulnerable to rapid degeneration, limiting efficacy of current SMA therapeutics. We hypothesized that accelerating SMA motor axon maturation would improve their function and reduce disease features. A principle regulator of peripheral axon development is neuregulin 1 type III (NRG1-III). Expressed on axon surfaces, it interacts with Schwann cell receptors to mediate axon ensheathment and myelination. We examined NRG1 mRNA and protein expression levels in human and mouse SMA tissues and observed reduced expression in SMA spinal cord and in ventral, but not dorsal root axons. To determine the impact of neuronal NRG1-III overexpression on SMA motor axon development, we bred NRG1-III overexpressing mice to SMA∆7 mice. Neonatally, elevated NRG1-III expression increased SMA ventral root size as well as axon segregation, diameter, and myelination resulting in improved motor axon conduction velocities. NRG1-III was not able to prevent distal axonal degeneration nor improve axon electrophysiology, motor behavior, or survival of older mice. Together these findings demonstrate that early SMA motor axon developmental impairments can be ameliorated by a molecular strategy independent of SMN replacement providing hope for future SMA combinatorial therapeutic approaches.
Assuntos
Atrofia Muscular Espinal , Neuregulina-1 , Animais , Humanos , Camundongos , Axônios/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Bainha de Mielina/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismoRESUMO
The peripheral nervous system harbors a remarkable potential to regenerate after acute nerve trauma. Full functional recovery, however, is rare and critically depends on peripheral nerve Schwann cells that orchestrate breakdown and resynthesis of myelin and, at the same time, support axonal regrowth. How Schwann cells meet the high metabolic demand required for nerve repair remains poorly understood. We here report that nerve injury induces adipocyte to glial signaling and identify the adipokine leptin as an upstream regulator of glial metabolic adaptation in regeneration. Signal integration by leptin receptors in Schwann cells ensures efficient peripheral nerve repair by adjusting injury-specific catabolic processes in regenerating nerves, including myelin autophagy and mitochondrial respiration. Our findings propose a model according to which acute nerve injury triggers a therapeutically targetable intercellular crosstalk that modulates glial metabolism to provide sufficient energy for successful nerve repair.
Assuntos
Bainha de Mielina , Nervos Periféricos , Bainha de Mielina/metabolismo , Neuroglia , Células de Schwann/metabolismo , Regeneração Nervosa/fisiologiaRESUMO
Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.
Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Bainha de Mielina/metabolismo , Axônios/metabolismo , Esclerose Múltipla/patologia , Encefalomielite Autoimune Experimental/patologia , Fatores de RiscoRESUMO
Peripheral nerve myelin facilitates rapid impulse conduction and normal motor and sensory functions. Many aspects of myelin biogenesis, glia-axonal interactions, and nerve homeostasis are poorly understood at the molecular level. We therefore hypothesized that only a fraction of all relevant myelin proteins has been identified so far. Combining gel-based and gel-free proteomic approaches, we identified 545 proteins in purified mouse sciatic nerve myelin, including 36 previously known myelin constituents. By mass spectrometric quantification, the predominant P0, periaxin, and myelin basic protein constitute 21, 16, and 8% of the total myelin protein, respectively, suggesting that their relative abundance was previously misestimated due to technical limitations regarding protein separation and visualization. Focusing on tetraspan-transmembrane proteins, we validated novel myelin constituents using immuno-based methods. Bioinformatic comparison with mRNA-abundance profiles allowed the categorization in functional groups coregulated during myelin biogenesis and maturation. By differential myelin proteome analysis, we found that the abundance of septin 9, the protein affected in hereditary neuralgic amyotrophy, is strongly increased in a novel mouse model of demyelinating neuropathy caused by the loss of prion protein. Finally, the systematic comparison of our compendium with the positions of human disease loci allowed us to identify several candidate genes for hereditary demyelinating neuropathies. These results illustrate how the integration of unbiased proteome, transcriptome, and genome data can contribute to a molecular dissection of the biogenesis, cell biology, metabolism, and pathology of myelin.
Assuntos
Proteínas de Membrana/metabolismo , Proteínas da Mielina/análise , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteoma/metabolismo , Nervo Isquiático/anatomia & histologia , Animais , Animais Recém-Nascidos , Quimiocinas/análise , Quimiocinas/metabolismo , Biologia Computacional , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Eletroforese em Gel Bidimensional , Masculino , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peso Molecular , Proteínas da Mielina/classificação , Proteínas da Mielina/genética , Bainha de Mielina/química , Príons/genética , Proteômica/métodos , RNA Mensageiro , Nervo Isquiático/metabolismo , Septinas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tetraspanina 24/análise , Tetraspanina 24/metabolismoRESUMO
Myelin sheath thickness is precisely adjusted to axon caliber, and in the peripheral nervous system, neuregulin 1 (NRG1) type III is a key regulator of this process. It has been proposed that the protease BACE1 activates NRG1 dependent myelination. Here, we characterize the predicted product of BACE1-mediated NRG1 type III processing in transgenic mice. Neuronal overexpression of a NRG1 type III-variant, designed to mimic prior cleavage in the juxtamembrane stalk region, induces hypermyelination in vivo and is sufficient to restore myelination of NRG1 type III-deficient neurons. This observation implies that the NRG1 cytoplasmic domain is dispensable and that processed NRG1 type III is sufficient for all steps of myelination. Surprisingly, transgenic neuronal overexpression of full-length NRG1 type III promotes hypermyelination also in BACE1 null mutant mice. Moreover, NRG1 processing is impaired but not abolished in BACE1 null mutants. Thus, BACE1 is not essential for the activation of NRG1 type III to promote myelination. Taken together, these findings suggest that multiple neuronal proteases collectively regulate NRG1 processing.
Assuntos
Secretases da Proteína Precursora do Amiloide/deficiência , Secretases da Proteína Precursora do Amiloide/fisiologia , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/fisiologia , Bainha de Mielina/metabolismo , Neuregulina-1/metabolismo , Neuregulina-1/fisiologia , Processamento de Proteína Pós-Traducional/genética , Transdução de Sinais/genética , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Técnicas de Cocultura , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/fisiologia , Bainha de Mielina/genética , Neuregulina-1/genética , Peptídeo Hidrolases/fisiologia , Cultura Primária de Células , Estrutura Terciária de Proteína/genéticaRESUMO
BACKGROUND: During development neural crest derived Schwann Cell (SC) precursors migrate to nerve trunks and populate nascent nerves. Axonal ensheathment by SC is a prerequisite for normal nerve function and the integrity of myelinated as well as nonmyelinated axons. To provide adequate support functions, SC colonize entire nerves. One important prerequisite for this is their migration into distal axonal regions. RESULTS: Here, we studied the role of Glial cell line derived neurotrophic factor (GDNF), a TGF-beta related growth factor, for SC migration. To this end we used a superior cervical ganglion (SCG) explant-SC migration assay, GDNF null mutant mouse embryos and a chemical inhibitor for GDNF signaling in combination with time-lapse imaging. We found that GDNF signaling is dispensable for SC migration along murine embryonic sympathetic axons. Furthermore, in vivo analyzes revealed that SC migration along the sciatic nerve is also not dependent on GDNF. CONCLUSIONS: In contrast to previous in vitro findings in the sciatic nerve and a SC precursor cell line, our results clearly indicate that GDNF is dispensable for embryonic SC migration. This is demonstrated for the sympathetic nervous system and also for the sciatic nerve in mouse.
Assuntos
Axônios/fisiologia , Movimento Celular/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Células de Schwann/fisiologia , Nervo Isquiático/citologia , Transdução de Sinais/genética , Animais , Afidicolina/farmacologia , Axônios/efeitos dos fármacos , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Histonas/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Fator de Crescimento Neural/farmacologia , Gravidez , Ratos , Proteínas S100/metabolismo , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/fisiologia , Gânglio Cervical Superior/citologia , Fatores de Tempo , Imagem com Lapso de Tempo , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
By pure endpoint diagnosis of the disease, the risk of developing schizophrenia has been repeatedly associated with specific variants of the neuregulin1 (NRG1) gene. However, the role of NRG1 in the etiology of schizophrenia has remained unclear. Since Nrg1 serves vital functions in early brain development of mice, we hypothesized that human NRG1 alleles codetermine developmentally influenced readouts of the disease: age of onset and positive symptom severity. We analyzed 1,071 comprehensively phenotyped schizophrenic/schizoaffective patients, diagnosed according to DSM-IV-TR, from the GRAS (Göttingen Research Association for Schizophrenia) Data Collection for genetic variability in the Icelandic region of risk in the NRG1 gene. For the case-control analysis part of the study, we included 1,056 healthy individuals with comparable ethnicity. The phenotype-based genetic association study (PGAS) was performed on the GRAS sample. Instead of a risk constellation, we detected that several haplotypic variants of NRG1 were, unexpectedly, less frequent in the schizophrenic than in the control sample (mean OR=0.78, range between 0.68 and 0.85). In the PGAS we found that these "protective" NRG1 variants are specifically underrepresented in subgroups of schizophrenic subjects with early age of onset and high positive symptom load. The GRAS Data Collection as a prerequisite for PGAS has enabled us to associate protective NRG1 genotypes with later onset and milder course of schizophrenia.
Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Neuregulina-1/genética , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Índice de Gravidade de Doença , Adulto , Idade de Início , Animais , Pareamento de Bases/genética , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Camundongos , Fenótipo , Esquizofrenia/patologiaRESUMO
Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination.