Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(5): 1855-1869, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693217

RESUMO

On-site solid-waste impoundments, landfills, and receiving water bodies have served as long-term disposal sites for coal combustion residuals (CCRs) across the United States for decades and collectively contain billions of tons of CCR material. CCR components include fine particulate material, minerals, and trace elements such as mercury, arsenic, selenium, lead, etc., which can have deleterious effects on ecosystem functioning and public health. Effects on communities can occur through consumption of drinking water, fish, and other aquatic organisms. The structural failure of impoundments, water infiltration, leakage from impoundments due to poor construction and monitoring, and CCR effluent discharges to water bodies have in the past resulted in harmful environmental impacts. Moreover, the risks posed by CCRs are present to this day, as coal continues to account for 11% of the energy production in the United States. In this Critical Review, the legacy of CCR disposal and the concomitant risks posed to public health and ecosystems are assessed. The resiliency of CCR disposal sites in the context of increased frequency and intensity of storm events and other hazards, such as floods and earthquakes, is also evaluated. We discuss the current state of knowledge on the environmental fate of CCR-derived elements, as well as advances in and limitations of analytical tools, which can improve the current understanding of CCR environmental impacts in order to mitigate the associated risks. An assessment of the 2015 Coal Ash Final Rule is also presented, along with needs to improve monitoring of CCR disposal sites and regulatory enforcement.


Assuntos
Selênio , Oligoelementos , Animais , Estados Unidos , Ecossistema , Carvão Mineral/análise , Monitoramento Ambiental , Oligoelementos/análise , Cinza de Carvão
2.
Environ Eng Sci ; 35(7): 728-738, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29983540

RESUMO

The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosms on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.

3.
Environ Sci Process Impacts ; 24(9): 1392-1405, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34727150

RESUMO

In anoxic environments, anaerobic microorganisms carrying the hgcAB gene cluster can mediate the transformation of inorganic mercury (Hg(II)) to monomethylmercury (MMHg). The kinetics of Hg(II) transformation to MMHg in periphyton from East Fork Poplar Creek (EFPC) in Oak Ridge, TN have previously been modeled using a transient availability model (TAM). The TAM for Hg(II) methylation combines methylation/demethylation kinetics with kinetic expressions for processes that decrease Hg(II) and MMHg availability for methylation and demethylation (multisite sorption of Hg(II) and MMHg, Hg(II) reduction/Hg(0) oxidation). In this study, the TAM is used for the first time to describe MMHg production in sediment. We assessed MMHg production in sediment microcosms using two different sediment types from EFPC: a relatively anoxic, carbon-rich sediment with higher microbial activity (higher CO2 production from sediment) and a relatively oxic, sandy, carbon-poor sediment with lower microbial activity (lower CO2 production from sediment). Based on 16s rRNA sequencing, the overall microbial community structure in the two sediments was retained during the incubations. However, the hgcA containing methanogenic Euryarchaeota communities differed between sediment types and their growth followed different trajectories over the course of incubations, potentially contributing to the distinct patterns of MMHg production observed. The general TAM paradigm performed well in describing MMHg production in the sediments. However, the MMHg production and ancillary data suggested the need to revise the model structure to incorporate terms for concentration-dependent microbial activity over the course of the incubations. We modified the TAM to include Monod-type kinetics for methylation and demethylation and observed an improved fit for the carbon-rich, microbially active sediment. Overall our work shows that the TAM can be applied to describe Hg(II) methylation in sediments and that including expressions accounting for concentration-dependent microbial activity can improve the accuracy of the model description of the data in some cases.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Carbono , Dióxido de Carbono , Sedimentos Geológicos/química , Cinética , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , RNA Ribossômico 16S , Poluentes Químicos da Água/análise
4.
Front Microbiol ; 12: 647861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815336

RESUMO

The conversion of mercury (Hg) to monomethylmercury (MMHg) is a critical area of concern in global Hg cycling. Periphyton biofilms may harbor significant amounts of MMHg but little is known about the Hg-methylating potential of the periphyton microbiome. Therefore, we used high-throughput amplicon sequencing of the 16S rRNA gene, ITS2 region, and Hg methylation gene pair (hgcAB) to characterize the archaea/bacteria, fungi, and Hg-methylating microorganisms in periphyton communities grown in a contaminated watershed in East Tennessee (United States). Furthermore, we examined how nutrient amendments (nitrate and/or phosphate) altered periphyton community structure and function. We found that bacterial/archaeal richness in experimental conditions decreased in summer and increased in autumn relative to control treatments, while fungal diversity generally increased in summer and decreased in autumn relative to control treatments. Interestingly, the Hg-methylating communities were dominated by Proteobacteria followed by Candidatus Atribacteria across both seasons. Surprisingly, Hg methylation potential correlated with numerous bacterial families that do not contain hgcAB, suggesting that the overall microbiome structure of periphyton communities influences rates of Hg transformation within these microbial mats. To further explore these complex community interactions, we performed a microbial network analysis and found that the nitrate-amended treatment resulted in the highest number of hub taxa that also corresponded with enhanced Hg methylation potential. This work provides insight into community interactions within the periphyton microbiome that may contribute to Hg cycling and will inform future research that will focus on establishing mixed microbial consortia to uncover mechanisms driving shifts in Hg cycling within periphyton habitats.

5.
Environ Toxicol Chem ; 39(2): 323-334, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31692059

RESUMO

We explored the concept of equilibrium passive sampling for methylmercury (MeHg) using the strategy developed for hydrophobic organic chemicals. Passive sampling should allow prediction of the concentration of the chemically labile fraction of MeHg in sediment porewaters based on equilibrium partitioning into the sampler, without modeling diffusion rates through the sampler material. Our goals were to identify sampler materials with the potential to mimic MeHg partitioning into animals and sediments and provide reversible sorption in a time frame appropriate for in situ samplers. Candidate materials tested included a range of polymers embedded with suitable sorbents for MeHg. The most promising were activated carbon (AC) embedded in agarose, thiol-self-assembled monolayers on mesoporous supports embedded in agarose, and cysteine-functionalized polyethylene terephthalate, which yielded log sampler-water partition coefficients of 2.8 to 5 for MeHgOH and MeHg complexed with dissolved organic matter (Suwannee River humic acid). Sampler equilibration time in sediments was approximately 1 to 2 wk. Investigation of the MeHg accumulation mechanism by AC embedded in agarose suggested that sampling was kinetically influenced by MeHg interactions with AC particles and not limited by diffusion through the gel for this material. Also, AC exhibited relatively rapid desorption of Hg and MeHg, indicating that this sorbent is capable of reversible, equilibrium measurements. In sediment:water microcosms, porewater concentrations made with isotherm-calibrated passive samplers agreed within a factor of 2 (unamended sediment) or 4 (AC-amended sediment) with directly measured concentrations. The present study demonstrates a potential new approach to passive sampling of MeHg. Environ Toxicol Chem 2020;39:323-334. © 2019 SETAC.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Compostos de Metilmercúrio/análise , Solo/química , Poluentes Químicos da Água/análise , Animais , Carvão Vegetal/química , Substâncias Húmicas/análise , Interações Hidrofóbicas e Hidrofílicas , Mercúrio/análise , Rios/química
6.
Environ Toxicol Chem ; 38(11): 2426-2435, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31365146

RESUMO

Periphyton biofilms produce a substantial fraction of the overall monomethylmercury (MMHg) flux in East Fork Poplar Creek, an industrially contaminated, freshwater creek in Oak Ridge, Tennessee. We examined periphyton MMHg production across seasons, locations, and light conditions using mercury stable isotopes. Methylation and demethylation rate potentials (km, trans av and kd, trans av , respectively) were calculated using a transient availability kinetic model. Light exposure and season were significant predictors of km, trans av , with greater values in full light exposure and in the summer. Season, light exposure, and location were significant predictors of kd, trans av , which was highest in dark conditions, in the spring, and at the upstream location. Light exposure was the controlling factor for net MMHg production, with positive production for periphyton grown under full light exposure and net demethylation for periphyton grown in the dark. Ambient MMHg and km, trans av were significantly correlated. Transient availability rate potentials were 15 times higher for km and 9 times higher for kd compared to full availability rate potentials (km, full av and kd, full av ) calculated at 1 d. No significant model for the prediction of km, full av or kd, full av could be constructed using light, season, and location. In addition, there were no significant differences among treatments for the full availability km, full av , kd, full av , or net MMHg calculated using the full availability rate potentials. km, full av was not correlated with ambient MMHg concentrations. The present results underscore the importance of applying transient availability kinetics to MMHg production data when estimating MMHg production potential and flux. Environ Toxicol Chem 2019;38:2426-2435. © 2019 SETAC.


Assuntos
Biofilmes , Ecossistema , Compostos de Metilmercúrio/análise , Modelos Teóricos , Perifíton , Rios/química , Poluentes Químicos da Água/análise , Mercúrio/análise , Metilação , Estações do Ano , Tennessee , Fatores de Tempo , Qualidade da Água
7.
Environ Sci Process Impacts ; 21(3): 485-496, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724289

RESUMO

Activated carbon (AC) amendments have shown promise in reducing inorganic mercury (Hg(ii) complexes, "Hg") and methylmercury (MeHg) risk in contaminated soils. However, the effectiveness of AC in Hg and MeHg immobilization has varied among studies, suggesting that site biogeochemistry might dictate efficacy. In this study, we examined the effect of dissolved organic matter (DOM) on MeHg and Hg sorption to AC. We evaluated the impact of Suwannee River Humic Acid (SRHA) on sorption to AC directly using an isotherm approach and in a soil/AC mixture using slurry microcosms. Aqueous sorption coefficients to AC (log KAC) for Hg-SRHA and MeHg-SRHA complexes were one to two orders of magnitude lower (Hg-SRHA = 4.53, MeHgSRHA = 4.35) than those for chloride complexes (HgCl2 = 6.55, MeHgCl = 4.90) and more closely resembled the log KAC of SRHA (3.64). In anoxic, sulfidic soil slurries, the KAC for sulfide species appeared stronger than for chloride or SRHA species for both Hg and MeHg. AC significantly reduced porewater concentrations of both ambient MeHg and a fresh Me199Hg spike, and the addition of up to 60 mg L-1 SRHA did not reduce sorption to AC. The AC also reduced ambient Hg and 201Hg porewater concentrations, but as SRHA concentration increased, the magnitude of solid phase sorption decreased. Speciation modeling revealed that SRHA may have impacted Hg distribution to the solid phase by reducing HgS precipitation. This study highlights the need for site-specific evaluation of AC efficacy and the value in developing biogeochemical models of AC performance for Hg control.


Assuntos
Carvão Vegetal/química , Substâncias Húmicas/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Solo/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Rios/química , Sulfetos/química
8.
Environ Sci Process Impacts ; 18(11): 1427-1439, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27722355

RESUMO

Mercury (Hg) associated with coal ash is an environmental concern, particularly if the release of coal ash to the environment is associated with the conversion of inorganic Hg to methylmercury (MeHg), a bioaccumulative form of Hg that is produced by anaerobic microorganisms. In this study, sediment slurry microcosm experiments were performed to understand how spilled coal ash might influence MeHg production in anaerobic sediments of an aquatic ecosystem. Two coal ash types were used: (1) a weathered coal ash; and (2) a freshly collected, unweathered fly ash that was relatively enriched in sulfate and Hg compared to the weathered ash. These ash samples were added to anaerobic sediment slurries constructed with a relatively pristine sediment (containing 0.03 mg kg-1 Hg) and a Hg-contaminated sediment (containing 0.29 mg kg-1 Hg). The results of these experiments showed negligible net production of MeHg in microcosms with no ash and in microcosms amended with the low sulfate/low Hg ash. In contrast, slurry microcosms amended with high sulfate/high Hg ash showed increases in total MeHg content that was 2 to 3 times greater than control microcosms without ash (p < 0.001). 16S amplicon sequencing of microbial communities in the slurries indicated that the coal ash addition generally increased the relative abundance of the methylating microbial community, including sulfate-reducing bacteria and iron-reducing bacteria species that are known to be efficient methylators of Hg. The stimulation of these microorganisms was likely caused by the release of substrates (sulfate and Fe) originating from the ash. Overall, the results highlight the need to incorporate both environmental parameters and coal ash characteristics into risk assessments that guide coal ash management and disposal.


Assuntos
Bactérias Anaeróbias/metabolismo , Cinza de Carvão/efeitos adversos , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Compostos de Metilmercúrio/metabolismo , Microbiota , Poluentes Químicos da Água/efeitos adversos , Cinza de Carvão/metabolismo , Sulfatos/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA