Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779946

RESUMO

Uncovering the role of reaction intermediates is crucial to developing an understanding of heterogeneous catalysis because catalytic reactions often involve complex networks of elementary steps. Identifying the reaction intermediates is often difficult because their short lifetimes and low concentrations make it difficult to observe them with surface sensitive spectroscopic techniques. In this paper we report a different approach to identify intermediates for the formic acid decomposition reaction on Pd(111) and Pd(332) based on accurate measurements of isotopologue specific thermal reaction rates. At low surface temperatures (∼400 K) CO2 formation is the major reaction pathway. The CO2 kinetic data show this occurs via two temporally resolved reaction processes. Thus, there must be two parallel pathways which we attribute to the participation of two intermediate species in the reaction. Isotopic substitution reveals large and isotopologue specific kinetic isotope effects that allow us to identify the two key intermediates as bidentate formate and carboxyl. The decomposition of the bidentate formate is substantially slower than that of carboxyl. On Pd(332), at high surface temperatures (643 K to 693 K) we observe both CO and CO2 production. The observation of CO formation reinforces the conclusion of calculations that suggest the carboxyl intermediate plays a major role in the water-gas shift reaction, where carboxyl exhibits temperature dependent branching between CO2 and CO.

2.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891809

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), characterized by hypovascularity, hypoxia, and desmoplastic stroma is one of the deadliest malignancies in humans, with a 5-year survival rate of only 7%. The anatomical location of the pancreas and lack of symptoms in patients with early onset of disease accounts for late diagnosis. Consequently, 85% of patients present with non-resectable, locally advanced, or advanced metastatic disease at diagnosis and rely on alternative therapies such as chemotherapy, immunotherapy, and others. The response to these therapies highly depends on the stage of disease at the start of therapy. It is, therefore, vital to consider the stages of PDAC models in preclinical studies when testing new therapeutics and treatment modalities. We report a standardized induction of cell-based orthotopic pancreatic cancer models in mice and the identification of vital features of their progression by ultrasound imaging and histological analysis of the level of pancreatic stellate cells, mature fibroblasts, and collagen. The results highlight that early-stage primary tumors are secluded in the pancreas and advance towards infiltrating the omentum at week 5-7 post implantation of the BxPC-3 and Panc-1 models investigated. Late stages show extensive growth, the infiltration of the omentum and/or stomach wall, metastases, augmented fibroblasts, and collagen levels. The findings can serve as suggestions for defining growth parameter-based stages of orthotopic pancreatic cancer models for the preclinical testing of drug efficacy in the future.


Assuntos
Carcinoma Ductal Pancreático , Modelos Animais de Doenças , Neoplasias Pancreáticas , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Humanos , Linhagem Celular Tumoral
3.
Eur J Clin Invest ; 53(3): e13907, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36377348

RESUMO

AIMS: Pulmonary hypertension (PH) is accompanied by pulmonary vascular remodelling. By targeted delivery of Interleukin-9 (IL9) via the immunocytokine F8IL9, beneficial effects could be demonstrated in a mouse model of PH. This study aimed to compare two immunocytokine formats (single-chain Fv and full IgG) and to identify potential target cells of IL9. METHODS: The Monocrotaline mouse model of PH (PH, n = 12) was chosen to evaluate the treatment effects of F8IL9F8 (n = 12) and F8IgGIL9 (n = 6) compared with sham-induced animals (control, n = 10), the dual endothelin receptor antagonist Macitentan (MAC, n = 12) or IL9-based immunocytokines with irrelevant antigen specificity (KSFIL9KSF, n = 12; KSFIgGIL9 n = 6). Besides comparative validation of treatment effects, the study was focused on the detection and quantification of mast cells (MCs) and regulatory T cells (Tregs). RESULTS: There was a significantly elevated systolic right ventricular pressure (104 ± 36 vs. 45 ± 17 mmHg) and an impairment of right ventricular echocardiographic parameters (RVbasal: 2.52 ± 0.25 vs. 1.94 ± 0.13 mm) in untreated PH compared with controls (p < 0.05). Only the groups treated with F8IL9, irrespective of the format, showed consistent beneficial effects (p < 0.05). Moreover, F8IL9F8 but not F8IgGIL9 treatment significantly reduced lung tissue damage compared with untreated PH mice (p < 0.05). There was a significant increase in Tregs in F8IL9-treated compared with control animals, the untreated PH and the MAC group (p < 0.05). CONCLUSIONS: Beneficial treatment effects of targeted IL9 delivery in a preclinical model of PH could be convincingly validated. IL9-mediated recruitment of Tregs into lung tissue might play a crucial role in the induction of anti-inflammatory and anti-proliferative mechanisms potentially contributing to a novel disease-modifying concept.


Assuntos
Hipertensão Pulmonar , Camundongos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Interleucina-9/efeitos adversos , Pulmão , Modelos Animais de Doenças
5.
J Phys Chem A ; 127(1): 142-152, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36583672

RESUMO

Velocity-resolved kinetics is used to measure the thermal rate of formic acid desorption from Pd(111) between 228 and 273 K for four isotopologues: HCOOH, HCOOD, DCOOH, DCOOD. Upon molecular adsorption, formic acid undergoes decomposition to CO2 and H2 and thermal desorption. To disentangle the contributions of individual processes, we implement a mass-balance-based calibration procedure from which the branching ratio between desorption and decomposition for formic acid is determined. From experimentally derived elementary desorption rate constants, we obtain the binding energy 639 ± 8 meV and the diffusion barrier 370 ± 130 meV using the detailed balance rate model (DBRM). The DBRM explains the observed kinetic isotope effects.

6.
Proteomics ; 22(10): e2100289, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143708

RESUMO

Aquatic pollution is an increasing problem and requires extensive research efforts to understand associated consequences and to find suitable solutions. The crustacean Daphnia is a keystone species in lacustrine ecosystems by connecting primary producers with higher trophic levels. Therefore, Daphnia is perfectly suitable to investigate biological effects of freshwater pollution and is frequently used as an important model organism in ecotoxicology. The field of ecotoxicoproteomics has become increasingly prevalent, as proteins are important for an organism's physiology and respond rapidly to changing environmental conditions. However, one obstacle in proteome analysis of Daphnia is highly abundant proteins like vitellogenin, decreasing the analytical depth of proteome analysis. To improve proteome coverage in Daphnia, we established an easy-to-use procedure based on the LC-MS/MS of whole daphnids and the dissected Daphnia gut, which is the main tissue getting in contact with soluble and particulate pollutants, separately. Using a comprehensive spectral library, generated by gas-phase fractionation and a data-independent acquisition method, we identified 4621 and 5233 protein groups at high confidence (false discovery rate < 0.01) in Daphnia and Daphnia gut samples, respectively. By combining both datasets, a proteome coverage of 6027 proteins was achieved, demonstrating the effectiveness of our approach.


Assuntos
Daphnia , Proteoma , Animais , Cromatografia Líquida , Daphnia/metabolismo , Ecossistema , Proteoma/metabolismo , Espectrometria de Massas em Tandem
7.
J Am Chem Soc ; 144(47): 21791-21799, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36399044

RESUMO

A detailed velocity-resolved kinetics study of NH3 thermal desorption rates from p(2 × 2) O/Pt(111) is presented. We find a large reduction in the NH3 desorption rate due to adsorption of O-atoms on Pt(111). A physical model describing the interactions between adsorbed NH3 and O-atoms explains these observations. By fitting the model to the derived desorption rate constants, we find an NH3 stabilization on p(2 × 2) O/Pt(111) of 0.147-0.014+0.023 eV compared to Pt(111) and a rotational barrier of 0.084-0.022+0.049 eV, which is not present on Pt(111). The model also quantitatively predicts the steric hindrance of NH3 diffusion on Pt(111) due to co-adsorbed O-atoms. The derived diffusion barrier of NH3 on p(2 × 2) O/Pt(111) is 1.10-0.13+0.22 eV, which is 0.39-0.14+0.22 eV higher than that on pristine Pt(111). We find that Perdew Burke Ernzerhof (PBE) and revised Perdew Burke Ernzerhof (RPBE) exchange-correlation functionals are unable to reproduce the experimentally observed NH3-O adsorbate-adsorbate interactions and NH3 binding energies at Pt(111) and p(2 × 2) O/Pt(111), which indicates the importance of dispersion interactions for both systems.


Assuntos
Difusão , Cinética , Adsorção
8.
Thorac Cardiovasc Surg ; 70(2): 143-151, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34894637

RESUMO

BACKGROUND: Research and scientific publications are important for the advancement of science but also for the individual career development. While women have become the majority of students in medicine we do not know about female presence and scientific activity in cardiac surgery. We thus aimed to compare scientific output of women and men in German University departments of cardiac surgery with cardiology departments focusing on the same organ and surgical departments not addressing the heart (general surgery) of 34 universities in Germany. METHODS: Personnel working at University departments was identified on the institutions internet homepage in 2014. Publications in 2011 to 2013 on PubMed were identified. Author and manuscript characteristics were determined. RESULTS: A lower proportion of women were working in cardiac surgery (25%) compared with cardiology (35%) and general (32%) surgery independent of executive function or academic degree. Scientifically active women published fewer manuscripts per capita than men both, in total and as first author. Additionally, the mean and the cumulated journal impact factor of the journals chosen was lower for women compared with men in cardiology but not in cardiac and general surgery. CONCLUSION: We conclude that the differences in scientific activity between women and men are more pronounced in cardiology compared with general and cardiac surgery, indicating that a higher proportion of women in a field does not result in reduced differences between sexes. The low number of women together with the lower number of manuscripts in cardiac surgery may render the appointment of women as directors challenging.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Cardiologia , Feminino , Humanos , Fator de Impacto de Revistas , Masculino , Editoração , Resultado do Tratamento
9.
Physiol Genomics ; 53(9): 395-405, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34297615

RESUMO

Aerobic exercise capacity is inversely related to morbidity and mortality as well as to insulin resistance. However, exercising in patients has led to conflicting results, presumably because aerobic exercise capacity consists of intrinsic (genetically determined) and extrinsic (environmentally determined) parts. The contribution of both parts to insulin sensitivity is also not clear. We investigated sedentary and exercised (aerobic interval training) high-capacity runners (HCR) and low-capacity runners (LCR) differing in their genetically determined aerobic exercise capacity to determine the contribution of both parts to insulin sensitivity. LCR and HCR differed in their untrained exercise capacity and body weight. Sedentary LCR displayed a diabetic phenotype with higher random glucose, lower glucose infusion rate during hyperinsulinemic euglycemic clamping than HCR. Echocardiography showed equal morphological and functional parameters and no change with exercise. Four week of exercise caused significant improvements in aerobic exercise capacity, which was more pronounced in LCR. However, with respect to glucose use, exercise affected HCR only. In these animals, exercise increased 2-deoxyglucose uptake in gastrocnemius (+58.5%, P = 0.1) and in epididymal fat (+106%; P < 0.05). Citrate synthase activity also increased in these tissues (gastrocnemius 69% epididymal fat 63%). In our model of HCR and LCR, genetic predisposition for low exercise capacity is associated with impaired insulin sensitivity and impedes exercise-induced improvements in insulin response. Our results suggest that genetic predisposition for low aerobic exercise capacity impairs insulin response, which may not be overcome by exercise.


Assuntos
Glicemia/metabolismo , Tolerância ao Exercício/genética , Glicólise/efeitos dos fármacos , Resistência à Insulina/genética , Insulina/farmacologia , Condicionamento Físico Animal/fisiologia , Corrida/psicologia , Animais , Glicemia/análise , Peso Corporal , Ecocardiografia/métodos , Feminino , Coração/diagnóstico por imagem , Masculino , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Ratos
10.
J Biol Chem ; 295(14): 4383-4397, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094224

RESUMO

Mitochondrial oxidative phosphorylation (OXPHOS) and cellular workload are tightly balanced by the key cellular regulator, calcium (Ca2+). Current models assume that cytosolic Ca2+ regulates workload and that mitochondrial Ca2+ uptake precedes activation of matrix dehydrogenases, thereby matching OXPHOS substrate supply to ATP demand. Surprisingly, knockout (KO) of the mitochondrial Ca2+ uniporter (MCU) in mice results in only minimal phenotypic changes and does not alter OXPHOS. This implies that adaptive activation of mitochondrial dehydrogenases by intramitochondrial Ca2+ cannot be the exclusive mechanism for OXPHOS control. We hypothesized that cytosolic Ca2+, but not mitochondrial matrix Ca2+, may adapt OXPHOS to workload by adjusting the rate of pyruvate supply from the cytosol to the mitochondria. Here, we studied the role of malate-aspartate shuttle (MAS)-dependent substrate supply in OXPHOS responses to changing Ca2+ concentrations in isolated brain and heart mitochondria, synaptosomes, fibroblasts, and thymocytes from WT and MCU KO mice and the isolated working rat heart. Our results indicate that extramitochondrial Ca2+ controls up to 85% of maximal pyruvate-driven OXPHOS rates, mediated by the activity of the complete MAS, and that intramitochondrial Ca2+ accounts for the remaining 15%. Of note, the complete MAS, as applied here, included besides its classical NADH oxidation reaction the generation of cytosolic pyruvate. Part of this largely neglected mechanism has previously been described as the "mitochondrial gas pedal." Its implementation into OXPHOS control models integrates seemingly contradictory results and warrants a critical reappraisal of metabolic control mechanisms in health and disease.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo , Animais , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Coração/fisiologia , Malatos/química , Malatos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Fosforilação Oxidativa , Ratos , Especificidade por Substrato , Sinaptossomos/metabolismo
11.
J Am Chem Soc ; 143(43): 18305-18316, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672570

RESUMO

We report accurate time-resolved measurements of NH3 desorption from Pt(111) and Pt(332) and use these results to determine elementary rate constants for desorption from steps, from (111) terrace sites and for diffusion on (111) terraces. Modeling the extracted rate constants with transition state theory, we find that conventional models for partition functions, which rely on uncoupled degrees of freedom (DOFs), are not able to reproduce the experimental observations. The results can be reproduced using a more sophisticated partition function, which couples DOFs that are most sensitive to NH3 translation parallel to the surface; this approach yields accurate values for the NH3 binding energy to Pt(111) (1.13 ± 0.02 eV) and the diffusion barrier (0.71 ± 0.04 eV). In addition, we determine NH3's binding energy preference for steps over terraces on Pt (0.23 ± 0.03 eV). The ratio of the diffusion barrier to desorption energy is ∼0.65, in violation of the so-called 12% rule. Using our derived diffusion/desorption rates, we explain why established rate models of the Ostwald process incorrectly predict low selectivity and yields of NO under typical reactor operating conditions. Our results suggest that mean-field kinetics models have limited applicability for modeling the Ostwald process.

12.
J Phys Chem A ; 125(34): 7396-7405, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34427437

RESUMO

Understanding heterogeneous catalysis is based on knowing the energetic stability of adsorbed reactants, intermediates, and products as well as the energetic barriers separating them. We report an experimental determination of the barrier to CO2 functionalization to form bidentate formate on a hydrogenated Pt surface and the corresponding reaction energy. This determination was possible using velocity resolved kinetics, which simultaneously provides information about both the dynamics and rates of surface chemical reactions. In these experiments, a pulse of isotopically labeled formic acid (DCOOH) doses the Pt surface rapidly forming bidentate formate (DCO*O*). We then record the (much slower) rate of decomposition of DCO*O* to form adsorbed D* and gas phase CO2. We establish the reaction mechanism by dosing with O2 to form adsorbed O*, which efficiently converts H* or D* to gas phase water. H2O is formed immediately reflecting rapid loss of the acidic proton associated with formation of formate, while D2O formation proceeds more slowly and on the same time scale as the CO2 production. The temperature dependence of the reaction rate yields an activation energy that reflects the energy of the transition state with respect to DCO*O*. The derived heat of formation for DCO*O* on Pt(111) agrees well with results of microcalorimetry. The maximum release of translational energy of the formed CO2 provides a measure of the energy of the transition state with respect to the products and the barrier to the reverse process, functionalization of CO2. The comparison between the results on Pt(111) and Pt(332) shows that the barrier for CO2 functionalization is reduced by the presence of steps. The approach taken here could provide a method to optimize catalysts for CO2 functionalization.

13.
J Chem Phys ; 154(15): 154304, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887941

RESUMO

A five parameter semiempirical Tang-Toennies type model is used to describe the potential curves of the a3Σ+-state of the heteronuclear polar molecules NaCs, KCs, and RbCs. These molecules are of current interest in experiments at ultra-cold conditions to explore the effects of the strong dipole-dipole forces on the collective many-body quantum behavior. New quantum phenomena are also anticipated in systems consisting of atomic species with different fermion/boson statistics. The model parameters are obtained by simultaneously fitting all five of the parameters to the extensive LIF-Fourier transform spectroscopy published by Tiemann and collaborators [e.g., Docenko et al. J. Phys. B: At., Mol. Opt. Phys. 39, S929-S943 (2006)], who also report best fit potential curves. Although the new potentials are in good agreement with the earlier potentials, they have the advantage that they are continuous over the entire range of internuclear distances and have the correct long-range behavior. The scattering lengths for all isotope combinations show good agreement with dedicated experiments where available. The new potentials are also in excellent agreement with combining rules based on the potentials of the homonuclear systems.

14.
J Cell Mol Med ; 24(12): 6741-6749, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32363733

RESUMO

In heart failure, high-fat diet (HFD) may exert beneficial effects on cardiac mitochondria and contractility. Skeletal muscle mitochondrial dysfunction in heart failure is associated with myopathy. However, it is not clear if HFD affects skeletal muscle mitochondria in heart failure as well. To induce heart failure, we used pressure overload (PO) in rats fed normal chow or HFD. Interfibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM) from gastrocnemius were isolated and functionally characterized. With PO heart failure, maximal respiratory capacity was impaired in IFM but increased in SSM of gastrocnemius. Unexpectedly, HFD affected mitochondria comparably to PO. In combination, PO and HFD showed additive effects on mitochondrial subpopulations which were reflected by isolated complex activities. While PO impaired diastolic as well as systolic cardiac function and increased glucose tolerance, HFD did not affect cardiac function but decreased glucose tolerance. We conclude that HFD and PO heart failure have comparable effects leading to more severe impairment of IFM. Glucose tolerance seems not causally related to skeletal muscle mitochondrial dysfunction. The additive effects of HFD and PO may suggest accelerated skeletal muscle mitochondrial dysfunction when heart failure is accompanied with a diet containing high fat.


Assuntos
Insuficiência Cardíaca/patologia , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Difosfato de Adenosina/metabolismo , Animais , Peso Corporal , Respiração Celular , Dieta Hiperlipídica , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Masculino , Músculo Esquelético/diagnóstico por imagem , Consumo de Oxigênio , Pressão , Ratos Sprague-Dawley
15.
J Chem Phys ; 153(11): 114303, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32962397

RESUMO

A semiempirical potential energy curve for the a3Σ+-state of the KRb molecule with only five parameters is reported. The potential is continuous over the entire range of internuclear distances and has the correct long-range attractive dispersion potential from established theory. The potential provides an equally good fit of the laser induced fluorescence Fourier transform spectroscopic data of Pashov et al. [Phys. Rev. A 76, 022511 (2007)] as their multi-parameter potential. The new potential is supported by the good agreement of the well parameters De, Re and the harmonic vibrational constant ωe with combining-rule estimates. The scattering lengths for all six isotopologues are also in excellent agreement with experiment with a 0.2% adjustment within theoretical uncertainty of the leading dispersion coefficient C6. An analysis of the harmonic vibrational constant ωe and the constant ωexe of the potential of Pashov et al. reveals a significant difference to the present potential which turned out to be due to an oscillatory deviation in their potential in the vicinity of the potential minimum. The new potential is, thus, the best available because its simplicity is ideal for further applications.

16.
Phys Rev Lett ; 123(15): 156101, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702291

RESUMO

Previous measurements of vibrational relaxation lifetimes for molecules adsorbed at metal surfaces yielded values of 1-3 ps; however, only chemisorbed molecules have been studied. We report the first measurements of the vibrational relaxation lifetime of a molecule physisorbed to a metal surface. For CO(v=1) adsorbed on Au(111) at 35 K the vibrational lifetime of the excited stretching mode is 49±3 ps. The long lifetime seen here is likely to be a general feature of physisorption, which involves weaker electronic coupling between the adsorbate and the solid due to bonding at larger distances.

17.
Thorac Cardiovasc Surg ; 67(6): 488-493, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29954032

RESUMO

BACKGROUND: Scientific publications are important for the advancement in medicine. Surgical disciplines including cardiac surgery are frequently considered not scientifically leading. However, a specific comparison between surgical and nonsurgical disciplines has not yet been performed. We thus compared scientific output of German departments of cardiac surgery with nonsurgical cardiology departments and surgical departments not addressing the heart (general surgery) of 34 universities in Germany. METHODS: For each university, the personnel working at the different departments were identified on the internet homepage in 2014. We searched for publications of these persons in 2011 to 2013 on PubMed, identified author position, coauthors, and type of article, as well as journal impact factor (JIF). RESULTS: There were 931 academic persons in cardiac surgery, 1,486 in general surgery, and 1,814 in cardiology with 12,096 publications related to these persons on PubMed. Cardiology published most manuscripts, including manuscripts from research conducted (first author), initiated (senior author), or both. Cardiac surgery had the least publications and had fewer authors from other departments or institutions. The average JIF was higher in cardiology compared with the two surgical disciplines. However, relating the number of publications to the number of employees in the departments, the differences were no longer apparent. CONCLUSION: We conclude that the number of publications in German universities appears to be a function of the number of academic personnel and not of the discipline. The lower JIFs in surgery may be due to the smaller surgical fields and/or due to less high impact interdisciplinary/interinstitutional publications in surgery.


Assuntos
Autoria , Pesquisa Biomédica , Procedimentos Cirúrgicos Cardíacos , Cardiologia , Docentes de Medicina , Cirurgia Geral , Publicações Periódicas como Assunto , Universidades , Bibliometria , Alemanha , Humanos , Fator de Impacto de Revistas
18.
Mol Cell Proteomics ; 15(10): 3170-3189, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27512079

RESUMO

Cardiomyocytes undergo growth and remodeling in response to specific pathological or physiological conditions. In the former, myocardial growth is a risk factor for cardiac failure and faster protein synthesis is a major factor driving cardiomyocyte growth. Our goal was to quantify the rapid effects of different pro-hypertrophic stimuli on the synthesis of specific proteins in ARVC and to determine whether such effects are caused by alterations on mRNA abundance or the translation of specific mRNAs. Cardiomyocytes have very low rates of protein synthesis, posing a challenging problem in terms of studying changes in the synthesis of specific proteins, which also applies to other nondividing primary cells. To study the rates of accumulation of specific proteins in these cells, we developed an optimized version of the Quantitative Noncanonical Amino acid Tagging LC/MS proteomic method to label and selectively enrich newly synthesized proteins in these primary cells while eliminating the suppressive effects of pre-existing and highly abundant nonisotope-tagged polypeptides. Our data revealed that a classical pathologic (phenylephrine; PE) and the recently identified insulin stimulus that also contributes to the development of pathological cardiac hypertrophy (insulin), both increased the synthesis of proteins involved in, e.g. glycolysis, the Krebs cycle and beta-oxidation, and sarcomeric components. However, insulin increased synthesis of many metabolic enzymes to a greater extent than PE. Using a novel validation method, we confirmed that synthesis of selected candidates is indeed up-regulated by PE and insulin. Synthesis of all proteins studied was up-regulated by signaling through mammalian target of rapamycin complex 1 without changes in their mRNA levels, showing the key importance of translational control in the rapid effects of hypertrophic stimuli. Expression of PKM2 was up-regulated in rat hearts following TAC. This isoform possesses specific regulatory properties, so this finding indicates it may be involved in metabolic remodeling and also serve as a novel candidate biomarker. Levels of translation factor eEF1 also increased during TAC, likely contributing to faster cell mass accumulation. Interestingly those two candidates were not up-regulated in pregnancy or exercise induced CH, indicating PKM2 and eEF1 were pathological CH specific markers. We anticipate that the methodologies described here will be valuable for other researchers studying protein synthesis in primary cells.


Assuntos
Insulina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Fenilefrina/farmacologia , Proteoma/efeitos dos fármacos , Proteômica/métodos , Animais , Células Cultivadas , Cromatografia Líquida , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Espectrometria de Massas , Miócitos Cardíacos/metabolismo , Proteoma/genética , Ratos , Ratos Sprague-Dawley
19.
Thorac Cardiovasc Surg ; 66(1): 11-19, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29258126

RESUMO

Excluding the heart from systemic circulation during cardiac surgery renders the myocardium ischemic, resulting in cardiac damage. In addition, another hit to the myocardium will occur upon restoration of blood flow, in the reperfusion phase. Experimental data from animal models have revealed that loss of cardiac metabolic flexibility and mitochondrial dysfunctions contributes to contractile impairment in hypertrophied, failing, obese, and diabetic hearts. Such diseased hearts are prone to myocardial ischemia-reperfusion (I/R) injury. Although analyses in human cardiac samples are not as comprehensive as animal data, similar disease-associated metabolic and mitochondrial changes exist. Considering increasing age and comorbidities in patients nowadays, it is not surprising that I/R injuries remain a major cause of morbidity and mortality after cardiac surgery. Mitochondria have emerged as critical targets but also key regulators of myocardial I/R injury, and the extent of mitochondrial damage is a major determinant of myocardial I/R injury. Although cardioprotective mechanisms are diverse, many come together and involve steps at the point of mitochondria. We will, therefore, provide a description of mitochondrial alterations observed in various cardiac disease states and discuss the current experimental knowledge of the role of mitochondria in I/R and of potential protective mechanisms against myocardial I/R injury involving mitochondria. Within this review, we will focus on the protection against I/R injury conferred by caloric restriction (CR) and by ischemic conditioning. Further research is needed to establish whether strategies targeting mitochondria, which have been proposed from preclinical studies, could be translated into cardioprotective therapies against I/R injury in patients.


Assuntos
Restrição Calórica , Procedimentos Cirúrgicos Cardíacos , Metabolismo Energético , Cardiopatias/cirurgia , Coração/fisiopatologia , Precondicionamento Isquêmico/métodos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fatores de Risco , Resultado do Tratamento
20.
Circ Res ; 117(7): 622-33, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26195221

RESUMO

RATIONALE: In chronic heart failure, increased adrenergic activation contributes to structural remodeling and altered gene expression. Although adrenergic signaling alters histone modifications, it is unknown, whether it also affects other epigenetic processes, including DNA methylation and its recognition. OBJECTIVE: The aim of this study was to identify the mechanism of regulation of the methyl-CpG-binding protein 2 (MeCP2) and its functional significance during cardiac pressure overload and unloading. METHODS AND RESULTS: MeCP2 was identified as a reversibly repressed gene in mouse hearts after transverse aortic constriction and was normalized after removal of the constriction. Similarly, MeCP2 repression in human failing hearts resolved after unloading by a left ventricular assist device. The cluster miR-212/132 was upregulated after transverse aortic constriction or on activation of α1- and ß1-adrenoceptors and miR-212/132 led to repression of MeCP2. Prevention of MeCP2 repression by a cardiomyocyte-specific, doxycycline-regulatable transgenic mouse model aggravated cardiac hypertrophy, fibrosis, and contractile dysfunction after transverse aortic constriction. Ablation of MeCP2 in cardiomyocytes facilitated recovery of failing hearts after reversible transverse aortic constriction. Genome-wide expression analysis, chromatin immunoprecipitation experiments, and DNA methylation analysis identified mitochondrial genes and their transcriptional regulators as MeCP2 target genes. Coincident with its repression, MeCP2 was removed from its target genes, whereas DNA methylation of MeCP2 target genes remained stable during pressure overload. CONCLUSIONS: These data connect adrenergic activation with a microRNA-MeCP2 epigenetic pathway that is important for cardiac adaptation during the development and recovery from heart failure.


Assuntos
Adaptação Fisiológica/fisiologia , Epigênese Genética/fisiologia , Insuficiência Cardíaca/metabolismo , Proteína 2 de Ligação a Metil-CpG/biossíntese , Receptores Adrenérgicos/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Doença Crônica , Insuficiência Cardíaca/genética , Humanos , Proteína 2 de Ligação a Metil-CpG/antagonistas & inibidores , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Ratos , Receptores Adrenérgicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA