RESUMO
ABSTRACT: Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic niche, which regulates HSPC quiescence, self-renewal, and commitment in a demand-adapted manner. Although the complex BM niche is responsible for adult hematopoiesis, evidence exists for simpler, albeit functional and more accessible, extramedullary hematopoietic niches. Inspired by the anecdotal description of retroperitoneal hematopoietic masses occurring at higher frequency upon hormonal dysregulation within the adrenal gland, we hypothesized that the adult adrenal gland could be induced into a hematopoietic-supportive environment in a systematic manner, thus revealing mechanisms underlying de novo niche formation in the adult. Here, we show that upon splenectomy and hormonal stimulation, the adult adrenal gland of mice can be induced to recruit and host functional HSPCs, capable of serial transplantation, and that this phenomenon is associated with de novo formation of platelet-derived growth factor receptor α/leptin receptor (PDGFRα+/LEPR+/-)-expressing stromal nodules. We further show in CXCL12-green fluorescent protein reporter mice that adrenal glands contain a stromal population reminiscent of the CXCL12-abundant reticular cells, which compose the BM HSPC niche. Mechanistically, HSPC homing to hormonally induced adrenal glands was found dependent on the CXCR4-CXCL12 axis. Mirroring our findings in mice, we found reticular CXCL12+ cells coexpressing master niche regulator FOXC1 in primary samples from human adrenal myelolipomas, a benign tumor composed of adipose and hematopoietic tissue. Our findings reignite long-standing questions regarding hormonal regulation of hematopoiesis and provide a novel model to facilitate the study of adult-specific inducible hematopoietic niches, which may pave the way to therapeutic applications.
Assuntos
Glândulas Suprarrenais , Quimiocina CXCL12 , Células-Tronco Hematopoéticas , Receptores CXCR4 , Nicho de Células-Tronco , Animais , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Quimiocina CXCL12/metabolismo , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Camundongos Endogâmicos C57BL , Humanos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Hematopoese Extramedular , Esplenectomia , Camundongos TransgênicosRESUMO
Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.
Assuntos
Medula Óssea , Hematologia , Humanos , Medula Óssea/patologia , Fluxo de Trabalho , Células da Medula Óssea/patologia , Exame de Medula ÓsseaRESUMO
Children with sickle cell disease (SCD) require specific perioperative care, and clinical practice in this area remains poorly defined. We aimed to conduct a systematic, PRISMA-based review of the literature, available clinical guidelines and practice recommendations. We also aimed to extract any valuable information for the "best of available-evidence"-based prevention of perioperative adverse events in children with SCD, and highlight the most urgent priorities in clinical research. As data sources, US National Library of Medicine, Medline, National Guideline Clearinghouse, International Guideline Network, TRIP databases were searched for any content until January 2019. We also included institutional, consortia and expert group guidelines. Included were reports/guidelines in English, French, German, and Italian. Excluded were reports on obstetrical and fetal management. We identified 202 reports/guidelines fulfilling the criteria outlined above. A majority focused on visceral, cardiovascular and orthopedic surgery procedures, and only five were multicenter randomized controlled trials and two prospective randomized studies. After grading of the quality of the evidence, the extracted data was summarized into clinical recommendations for daily practice. Additionally, we designed a risk-grading algorithm to identify contexts likely to be associated with adverse outcomes. In conclusion, we provide a systematic PRISMA-based review of the existing literature and ancillary practice and delineate a set of clinical recommendations and priorities for research.
Assuntos
Anemia Falciforme/cirurgia , Assistência Perioperatória/métodos , Guias de Prática Clínica como Assunto , Criança , Humanos , Medição de RiscoRESUMO
This retrospective study attempts to establish if a correlation exists between osteoporosis and hematopoiesis before and after adjuvant chemotherapy in the context of non-metastatic breast cancer. Osteoporosis is interpreted both as a direct marker of osteoblastic decline and as an indirect marker of increased bone marrow adiposity within the hematopoietic microenvironment. Patients from the "Centre du Sein" at CHUV (Centre Hospitalier Universitaire Vaudois) undergoing adjuvant chemotherapy were included in this study. Evolution of blood counts was studied in correlation with the osteoporosis status. Toxicity of chemotherapy was coded according to published probability of febrile neutropenia. One hundred forty-three women were included: mean age 52.1 ± 12.5 years, mean BMI (body mass index) 24.4 ± 4.1. BMD (bone mineral density) scored osteoporotic in 32% and osteopenic in 45%. Prior to chemotherapy, BMD was positively correlated with neutrophil (p < 0.001) and thrombocyte (p = 0.01) count; TBS (trabecular bone score) was not correlated with blood count. After the first cycle of chemotherapy, an increase of one point in TBS correlated with a decrease of 57% on the time to reach leucocyte nadir (p = 0.004). There was a positive correlation between BMD and risk of infection (p < 0.001). Our data demonstrates an association between osteoporosis and lower blood counts in a younger cohort than previously published, extending it for the first time to neutrophil counts in females. Our results suggest that the healthier the bone, the earlier the lowest leucocyte count value, prompting further research on this area.
Assuntos
Antineoplásicos/administração & dosagem , Doenças Ósseas Metabólicas/complicações , Neoplasias da Mama/complicações , Quimioterapia Adjuvante , Neutropenia/induzido quimicamente , Osteoporose/complicações , Absorciometria de Fóton , Adipócitos/efeitos dos fármacos , Adipócitos/imunologia , Adipócitos/patologia , Adulto , Idoso , Antineoplásicos/efeitos adversos , Plaquetas/efeitos dos fármacos , Plaquetas/imunologia , Plaquetas/patologia , Índice de Massa Corporal , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/imunologia , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/imunologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Contagem de Células , Feminino , Hematopoese/efeitos dos fármacos , Hematopoese/imunologia , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/efeitos dos fármacos , Vértebras Lombares/imunologia , Vértebras Lombares/patologia , Pessoa de Meia-Idade , Neutropenia/diagnóstico por imagem , Neutropenia/imunologia , Neutropenia/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/patologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/imunologia , Osteoblastos/patologia , Osteoporose/diagnóstico por imagem , Osteoporose/tratamento farmacológico , Osteoporose/imunologia , Estudos RetrospectivosRESUMO
Aging compromises hematopoietic and immune system functions, making older adults especially susceptible to hematopoietic failure, infections and tumor development, and thus representing an important medical target for a broad range of diseases. During aging, hematopoietic stem cells (HSCs) lose their blood reconstitution capability and commit preferentially toward the myeloid lineage (myeloid bias)1,2. These processes are accompanied by an aberrant accumulation of mitochondria in HSCs3. The administration of the mitochondrial modulator urolithin A corrects mitochondrial function in HSCs and completely restores the blood reconstitution capability of 'old' HSCs. Moreover, urolithin A-supplemented food restores lymphoid compartments, boosts HSC function and improves the immune response against viral infection in old mice. Altogether our results demonstrate that boosting mitochondrial recycling reverts the aging phenotype in the hematopoietic and immune systems.
Assuntos
Envelhecimento , Sistema Imunitário , Animais , Camundongos , Alimentos Fortificados , Células-Tronco Hematopoéticas , MitocôndriasRESUMO
The hematopoietic stem cell niche constitutes a complex bone marrow (BM) microenvironment. Osteoporosis is characterized by both reduced bone mineral density (BMD) and microarchitectural deterioration, constituting the most frequent alteration of the BM microenvironment. It is unclear to which extent modifications of the BM microenvironment, including in the context of osteoporosis, influence blood cell production. We aimed to describe the association between lumbar spine and total hip BMD and microarchitecture (assessed by trabecular bone score [TBS]) and differential blood counts. Data were collected at two time points from 803 (first assessment) and 901 (second assessment) postmenopausal women participating in the CoLaus/OsteoLaus cohort, a population-based sample in Lausanne, Switzerland. Participants with other active disease or treatment that could influence hematopoiesis or osteoporosis were excluded. Bivariate and multivariate associations between each peripheral blood cell count and BMD or TBS were performed. Additionally, participants in the highest BMD and TBS tertiles were compared with participants in the lowest BMD and TBS tertiles. At first assessment, only neutrophils were significantly different in the lowest BMD and TBS tertile (3.18 ± 0.09 versus 3.47 ± 0.08 G/L, p = 0.028). At the second assessment, leucocytes (5.90 ± 0.11 versus 5.56 ± 0.10 G/L, p = 0.033), lymphocytes (1.87 ± 0.04 versus 1.72 ± 0.04 G/L p = 0.033), and monocytes (0.49 ± 0.01 versus 0.46 ± 0.1 G/L, p = 0.033) were significantly different. Power analysis did not identify quasi-significant associations missed due to sample size. Although significant associations between blood counts and BMD or TBS were found, none was consistent across bone measurements or assessments. This study suggests that, at homeostasis and in postmenopausal women, there is no clinically significant association between the osteoporotic microenvironment and blood production output as measured by differential blood counts. In the context of conflicting reports on the relationship between osteoporosis and hematopoiesis, our study represents the first prospective two time-point analysis of a large, homogenous cohort at steady state. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
RESUMO
The bone marrow (BM) exists heterogeneously as hematopoietic/red or adipocytic/yellow marrow depending on skeletal location, age, and physiological condition. Mouse models and patients undergoing radio/chemotherapy or suffering acute BM failure endure rapid adipocytic conversion of the marrow microenvironment, the so-called "red-to-yellow" transition. Following hematopoietic recovery, such as upon BM transplantation, a "yellow-to-red" transition occurs and functional hematopoiesis is restored. Gold Standards to estimate BM cellular composition are pathologists' assessment of hematopoietic cellularity in hematoxylin and eosin (H&E) stained histological sections as well as volumetric measurements of marrow adiposity with contrast-enhanced micro-computerized tomography (CE-µCT) upon osmium-tetroxide lipid staining. Due to user-dependent variables, reproducibility in longitudinal studies is a challenge for both methods. Here we report the development of a semi-automated image analysis plug-in, MarrowQuant, which employs the open-source software QuPath, to systematically quantify multiple bone components in H&E sections in an unbiased manner. MarrowQuant discerns and quantifies the areas occupied by bone, adipocyte ghosts, hematopoietic cells, and the interstitial/microvascular compartment. A separate feature, AdipoQuant, fragments adipocyte ghosts in H&E-stained sections of extramedullary adipose tissue to render adipocyte area and size distribution. Quantification of BM hematopoietic cellularity with MarrowQuant lies within the range of scoring by four independent pathologists, while quantification of the total adipocyte area in whole bone sections compares with volumetric measurements. Employing our tool, we were able to develop a standardized map of BM hematopoietic cellularity and adiposity in mid-sections of murine C57BL/6 bones in homeostatic conditions, including quantification of the highly predictable red-to-yellow transitions in the proximal section of the caudal tail and in the proximal-to-distal tibia. Additionally, we present a comparative skeletal map induced by lethal irradiation, with longitudinal quantification of the "red-to-yellow-to-red" transition over 2 months in C57BL/6 femurs and tibiae. We find that, following BM transplantation, BM adiposity inversely correlates with kinetics of hematopoietic recovery and that a proximal to distal gradient is conserved. Analysis of in vivo recovery through magnetic resonance imaging (MRI) reveals comparable kinetics. On human trephine biopsies MarrowQuant successfully recognizes the BM compartments, opening avenues for its application in experimental, or clinical contexts that require standardized human BM evaluation.