Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Aging Clin Exp Res ; 33(6): 1705-1708, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31606858

RESUMO

Alzheimer's disease (AD) is the most frequent cause of dementia in the elderly. Few cases are familial (FAD), due to autosomal dominant mutations in presenilin-1 (PS1), presenilin-2 (PS2) or amyloid precursor protein (APP). The three proteins are involved in the generation of amyloid-beta (Aß) peptides, providing genetic support to the hypothesis of Aß pathogenicity. However, clinical trials focused on the Aß pathway failed in their attempt to modify disease progression, suggesting the existence of additional pathogenic mechanisms. Ca2+ dysregulation is a feature of cerebral aging, with an increased frequency and anticipated age of onset in several forms of neurodegeneration, including AD. Interestingly, FAD-linked PS1 and PS2 mutants alter multiple key cellular pathways, including Ca2+ signaling. By generating novel tools for measuring Ca2+ in living cells, and combining different approaches, we showed that FAD-linked PS2 mutants significantly alter cell Ca2+ signaling and brain network activity, as summarized below.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Homeostase , Humanos , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo
2.
Int J Mol Sci ; 21(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722509

RESUMO

Senile plaques, the hallmarks of Alzheimer's Disease (AD), are generated by the deposition of amyloid-beta (Aß), the proteolytic product of amyloid precursor protein (APP), by ß and γ-secretase. A large body of evidence points towards a role for Ca2+ imbalances in the pathophysiology of both sporadic and familial forms of AD (FAD). A reduction in store-operated Ca2+ entry (SOCE) is shared by numerous FAD-linked mutations, and SOCE is involved in Aß accumulation in different model cells. In neurons, both the role and components of SOCE remain quite obscure, whereas in astrocytes, SOCE controls their Ca2+-based excitability and communication to neurons. Glial cells are also directly involved in Aß production and clearance. Here, we focus on the role of ORAI2, a key SOCE component, in modulating SOCE in the human neuroglioma cell line H4. We show that ORAI2 overexpression reduces both SOCE level and stores Ca2+ content, while ORAI2 downregulation significantly increases SOCE amplitude without affecting store Ca2+ handling. In Aß-secreting H4-APPswe cells, SOCE inhibition by BTP2 and SOCE augmentation by ORAI2 downregulation respectively increases and decreases Aß42 accumulation. Based on these findings, we suggest ORAI2 downregulation as a potential tool to rescue defective SOCE in AD, while preventing plaque formation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sinalização do Cálcio , Neurônios/metabolismo , Proteína ORAI2/metabolismo , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/patologia , Células HEK293 , Células HeLa , Humanos , Neurônios/patologia
3.
Cells ; 9(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878336

RESUMO

To fight Alzheimer's disease (AD), we should know when, where, and how brain network dysfunctions initiate. In AD mouse models, relevant information can be derived from brain electrical activity. With a multi-site linear probe, we recorded local field potentials simultaneously at the posterior-parietal cortex and hippocampus of wild-type and double transgenic AD mice, under anesthesia. We focused on PS2APP (B6.152H) mice carrying both presenilin-2 (PS2) and amyloid precursor protein (APP) mutations, at three and six months of age, before and after plaque deposition respectively. To highlight defects linked to either the PS2 or APP mutation, we included in the analysis age-matched PS2.30H and APP-Swedish mice, carrying each of the mutations individually. Our study also included PSEN2-/- mice. At three months, only predeposition B6.152H mice show a reduction in the functional connectivity of slow oscillations (SO) and in the power ratio between SO and delta waves. At six months, plaque-seeding B6.152H mice undergo a worsening of the low/high frequency power imbalance and show a massive loss of cortico-hippocampal phase-amplitude coupling (PAC) between SO and higher frequencies, a feature shared with amyloid-free PS2.30H mice. We conclude that the PS2 mutation is sufficient to impair SO PAC and accelerate network dysfunctions in amyloid-accumulating mice.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Excitabilidade Cortical/fisiologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Conectoma/métodos , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Lobo Parietal/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Agregação Patológica de Proteínas/metabolismo
4.
Neurobiol Aging ; 50: 64-76, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27889678

RESUMO

Alterations of brain network activity are observable in Alzheimer's disease (AD) together with the occurrence of mild cognitive impairment, before overt pathology. However, in humans as well in AD mouse models, identification of early biomarkers of network dysfunction is still at its beginning. We performed in vivo recordings of local field potential activity in the dentate gyrus of PS2APP mice expressing the human amyloid precursor protein (APP) Swedish mutation and the presenilin-2 (PS2) N141I. From a frequency-domain analysis, we uncovered network hyper-synchronicity as early as 3 months, when intracellular accumulation of amyloid beta was also observable. In addition, at 6 months of age, we identified network hyperactivity in the beta/gamma frequency bands, along with increased theta-beta and theta-gamma phase-amplitude cross-frequency coupling, in coincidence with the histopathological traits of the disease. Although hyperactivity and hypersynchronicity were respectively detected in mice expressing the PS2-N141I or the APP Swedish mutant alone, the increase in cross-frequency coupling specifically characterized the 6-month-old PS2APP mice, just before the surge of the cognitive decline.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Hipocampo/fisiopatologia , Mutação , Presenilina-2/genética , Potenciais de Ação , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cognição , Disfunção Cognitiva/fisiopatologia , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA