Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 22(12): 4758-4764, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35679577

RESUMO

Freestanding oxide membranes constitute an intriguing material platform for new functionalities and allow integration of oxide electronics with technologically important platforms such as silicon. Sambri et al. recently reported a method to fabricate freestanding LaAlO3/SrTiO3 (LAO/STO) membranes by spalling of strained heterostructures. Here, we first develop a scheme for the high-yield fabrication of membrane devices on silicon. Second, we show that the membranes exhibit metallic conductivity and a superconducting phase below ∼200 mK. Using anisotropic magnetotransport we extract the superconducting phase coherence length ξ ≈ 36-80 nm and establish an upper bound on the thickness of the superconducting electron gas d ≈ 17-33 nm, thus confirming its two-dimensional character. Finally, we show that the critical current can be modulated using a silicon-based backgate. The ability to form superconducting nanostructures of LAO/STO membranes, with electronic properties similar to those of the bulk counterpart, opens opportunities for integrating oxide nanoelectronics with silicon-based architectures.

2.
Nanotechnology ; 32(2): 025305, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33089826

RESUMO

Aluminum bowtie nanoantennas represent a possibility to confine and enhance electromagnetic (EM) field at optical frequencies in subwavelength regions by using an abundant and inexpensive metal. The native oxidation process of this metal is often viewed as a limitation for its application in plasmonics. Here, we show that in close gap configurations, the high refractive index of the native aluminum oxide helps in squeezing the plasmonic mode in extremely reduced size volumes, providing a higher EM near-field confinement and enhancement in the bowtie antenna gaps than achieved in the pure aluminum counterpart. Hence, the study provides new perspectives in the use of such a plasmonic antenna geometry within this aluminum system, which can be useful for improving plasmonics-enabled effects such as surface-enhanced Raman scattering- and light-matter interaction in strong coupling regime.

3.
Nanotechnology ; 29(13): 135707, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359713

RESUMO

ZnO nanowalls (NWLs) represent a non-toxic, Earth abundant, high surface-to-volume ratio, semiconducting nanostructure which has already showed potential applications in biosensing, environmental monitoring and energy. Low-cost synthesis of these nanostructures is extremely appealing for large scale upgrading of laboratory results, and its implementation has to be tested at the nanoscale, at least in terms of chemical purity and crystallographic orientation. Here, we have produced pure and texturized ZnO NWLs by using chemical bath deposition (CBD) synthesis followed by a thermal treatment at 300 °C. We examined the NWL formation process and the new obtained structure at the nanoscale, by means of scanning and transmission electron microscopy in combination with x-ray diffraction and Rutherford backscattering spectrometry. We have shown that only after annealing at 300 °C in nitrogen does the as-grown material, composed of a mixture of Zn compounds NWLs, show its peculiar crystal arrangement. The resulting ZnO sheets are in fact made by ZnO wurtzite domains (4-5 nm) that show a particular kind of texturization; indeed, they are aligned with their own c-axis always perpendicular to the sheets forming the wall and rotated (around the c-axis) by multiples of 20° from each other. The presented data show that low-cost CBD, followed by an annealing process, gives pure ZnO with a peculiarly ordered nanostructure that shows three-fold symmetry. Such evidence at the nanoscale will have significant implications for realizing sensing or catalyst devices based on ZnO NWLs.

4.
Nano Lett ; 16(9): 5823-8, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27564432

RESUMO

The capability to fully control the chiro-optical properties of metamaterials in the visible range enables a number of applications from integrated photonics to life science. To achieve this goal, a simultaneous control over complex spatial and localized structuring as well as material composition at the nanoscale is required. Here, we demonstrate how circular dichroic bands and optical rotation can be effectively and independently tailored throughout the visible regime as a function of the fundamental meta-atoms properties and of their three dimensional architecture in a the helix-shaped metamaterials. The record chiro-optical effects obtained in the visible range are accompanied by an additional control over optical efficiency, even in the plasmonic context. These achievements pave the way toward fully integrated chiral photonic devices.

5.
Clin Exp Nephrol ; 19(4): 606-15, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25351822

RESUMO

Grey-scale ultrasound has an important diagnostic role in nephrology. The absence of ionizing radiations and nephrotoxicity, rapidity of execution, excellent repeatability, the possibility to perform the test at the patient's bed and the low cost represent important advantages of this technique. Paired with real-time sonography and colour-power-Doppler contrast-enhanced ultrasound (CEUS) reduces the diagnostic gap with computed tomography (CT) and magnetic resonance (MR) and represents a major step in the evolution of clinical ultrasound. Although there are several situations in which contrast-enhanced CT and MR are indicated (i.e. evaluation of cystic or ischemic lesions, traumatisms and ablative therapies of the native and transplanted kidney), the use of CT contrast media presents a high risk of contrast-induced nephropathy (i.e. in elderly people, subjects with comorbidities and those with renal dysfunction), while gadolinium-based RM contrast agents are contraindicated for the risk of nephrogenic systemic fibrosis (i.e. in patients with severe renal dysfunction). In these situations, CEUS may be a viable alternative, however, as any technique associated with the infusion of pharmacological substances, the potential advantages and risks of CEUS should be critically evaluated. In this regard, the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) has published the guidelines for the use of CEUS for the kidney imaging and the International Contrast Ultrasound Society (ICUS) has been recently founded. The aim of this review is to offer an updated overview of the potential applications of CEUS in nephrology, reporting some indications and possible risks associated to its use.


Assuntos
Meios de Contraste , Nefropatias/diagnóstico por imagem , Nefrologia/métodos , Humanos , Ultrassonografia
6.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251136

RESUMO

Analytical methods for the early detection of the neurodegenerative biomarker for Parkinson's disease (PD), α-synuclein, are time-consuming and invasive, and require skilled personnel and sophisticated and expensive equipment. Thus, a pain-free, prompt and simple α-synuclein biosensor for detection in plasma is highly demanded. In this paper, an α-synuclein electrochemical biosensor based on hierarchical polyglutamic acid/ZnO nanowires decorated by gold nanoparticles, assembled as nanostars (NSs), for the determination of α-synuclein in human plasma is proposed. ZnO NSs were prepared by chemical bath deposition (CBD) and decorated with electrodeposited Au nanoparticles (Au NPs). Then, electro-polymerized glutamic acid was grown and functionalized with anti-α-synuclein. A synergistic enhancement of electrode sensitivity was observed when Au NPs were embedded into ZnO NSs. The analytical performance of the biosensor was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), using the Fe(II)(CN)64-/Fe(III)(CN)63- probe. The charge transfer resistance after α-synuclein recognition was found to be linear, with a concentration in the range of 0.5 pg·mL-1 to 10 pg·mL-1, a limit of detection of 0.08 pg·mL-1, and good reproducibility (5% variation) and stability (90%). The biosensor was also shown to reliably discriminate between healthy plasma and PD plasma. These results suggest that the proposed biosensor provides a rapid, quantitative and high-sensitivity result of the α-synuclein content in plasma, and represents a feasible tool capable of accelerating the early and non-invasive identification of Parkinson's disease.

7.
iScience ; 27(4): 109422, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544568

RESUMO

Discovery of iron-based superconductors paved the way to a competitor of high-temperature superconductors, easier to produce, better performing in high fields, and promising to be less expensive. Critical parameters are investigated by resistivity measurements as a function of temperature, field, and angle R(T,H,θ). This work presents a deep analysis of H-θ phase diagram of PLD-processed Fe(Se,Te) superconducting films, thus revealing material and pinning anisotropy at once. By selecting different thresholds along the R(T,H,θ) curves, all possible regimes emerge. Surprisingly, anisotropy arises moving from the upper critical field toward the irreversibility line: gradually a non-monotonous transition from 3D to 2D, and backward to 3D occurs. Although Fe(Se,Te) appears as a 3D superconductor, its anisotropic pinning landscape shows up similarities with an intrinsic layered superconductor and Fe(Se,Te) definitively mimics YBCO. We propose a general method to disentangle, in any other superconductor, material dimensionality and pinning anisotropy that are key constraints for applications.

8.
Sci Rep ; 13(1): 3203, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828859

RESUMO

Bimetallic decoration of semiconductor electrodes typically improves catalytic and sensing performances because of a well-claimed synergistic effect. A microscopic and quantitative investigation of such an effect on energy bands of semiconductor can be really useful for further exploitation. Au, Pd and Au@Pd (core@shell) nanoparticles (10-20 nm in size) were synthesized through chemical reduction method and characterized with scanning and transmission microscopy, Rutherford backscattering spectrometry, cyclic voltammetry electrochemical impedance spectroscopy and Mott-Schottky analysis. The nanoparticles have been used to decorate Ni-based nanostructured electrodes with the aim to quantitatively investigate the effect of decoration with mono or bimetallic nanoparticles. Decorated electrodes show higher redox currents than bare ones and a shift in redox peaks (up to 0.3 V), which can be ascribed to a more efficient electron transport and improved catalytic properties. These effects were satisfactorily modeled (COMSOL) employing a nano Schottky junction at the nanoparticle-semiconductor interface, pointing out large energy band bending (up to 0.4 eV), space charge region and local electric field (up to [Formula: see text]) in bimetallic decoration. Sensing test of glucose and H2O2 by decorated Ni oxide electrodes were performed to consolidate our model. The presence of bimetallic nanoparticles enhances enormously the electrochemical performances of the material in terms of sensitivity, catalytic activity, and electrical transport. The modification of energy band diagram in semiconductor is analyzed and discussed also in terms of electron transfer during redox reactions.

9.
Nanomaterials (Basel) ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36616127

RESUMO

Nanocomposites formed by aluminum-doped zinc oxide nanoparticles (AZO-NP) and multiwall carbon nanotubes (CNT) are proposed here as a promising material for UV light sensing applications, with the great advantage of operating in air, at room temperature, and at low voltage. Nanocomposite layers were prepared with different AZO:CNT weight ratios by a simple methodology at room temperature. They were characterized by means of UV-Vis spectroscopy, scanning and transmission electron microscopies (SEM and TEM), and X-ray photoelectron spectroscopy (XPS). The interaction between the two nanomaterials was demonstrated by comparing the properties of the nanocomposite with the ones shown by the AZO-NPs. Dense AZO-CNT nanocomposite layers were deposited between two metal electrodes on a SiO2/Si substrate, and the electrical properties were investigated in dark condition and under UV light irradiation. The electrical response to the UV light was a sudden current increase that reduced when the light was switched off. Several UV on/off cycles were performed, showing good repeatability and stability of the response. The mechanisms involved in the electrical response are discussed and compared to the ones previously reported for ZnO-CNT nanocomposites.

10.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500791

RESUMO

Transition metal oxide nanostructures are promising materials for energy storage devices, exploiting electrochemical reactions at nanometer solid-liquid interface. Herein, WO3 nanorods and hierarchical urchin-like nanostructures were obtained by hydrothermal method and calcination processes. The morphology and crystal phase of WO3 nanostructures were investigated by scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD), while energy storage performances of WO3 nanostructures-based electrodes were evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests. Promising values of specific capacitance (632 F/g at 5 mV/s and 466 F/g at 0.5 A/g) are obtained when pure hexagonal crystal phase WO3 hierarchical urchin-like nanostructures are used. A detailed modeling is given of surface and diffusion-controlled mechanisms in the energy storage process. An asymmetric supercapacitor has also been realized by using WO3 urchin-like nanostructures and a graphene paper electrode, revealing the highest energy density (90 W × h/kg) at a power density of 90 W × kg-1 and the highest power density (9000 W/kg) at an energy density of 18 W × h/kg. The presented correlation among physical features and electrochemical performances of WO3 nanostructures provides a solid base for further developing energy storage devices based on transition metal oxides.

11.
Tomography ; 8(2): 798-814, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35314643

RESUMO

BACKGROUND: A key issue in abdominal US is the assessment of fluid, which is usually anechoic, thus appearing "black". Our approach focuses on searching for fluid in non-traumatic patients, providing a new, simplified method for point-of-care US (POCUS). OBJECTIVE: Fluid assessment is based on a three-step analysis that we can thus summarize. 1. Look for black where it should not be. This means searching for effusions or collections. 2. Check if black is too much. This means evaluating anatomical landmarks where fluid should normally be present but may be abnormally abundant. 3. Look for black that is not clearly black. This means evaluating fluid aspects, whether wholly anechoic or not (suggesting heterogeneous or corpusculated fluid). DISCUSSION: Using this simple method focused on US fluid presence and appearance should help clinicians to make a timely diagnosis. Although our simplified, systematic algorithm of POCUS may identify abnormalities; this usually entails a second-level imaging. An accurate knowledge of the physio-pathological and anatomical ultrasound bases remains essential in applying this algorithm. CONCLUSION: The black pattern approach in non -traumatic emergencies may be applied to a broad spectrum of abnormalities. It may represent a valuable aid for emergency physicians, especially if inexperienced, involved in a variety of non-traumatic scenarios. It may also be a simple and effective teaching aid for US beginners.


Assuntos
Abdome , Emergências , Abdome/diagnóstico por imagem , Algoritmos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Ultrassonografia/métodos
12.
Pharmaceutics ; 14(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297682

RESUMO

Cancer-targeted drug delivery systems (DDS) based on carbon nanostructures have shown great promise in cancer therapy due to their ability to selectively recognize specific receptors overexpressed in cancer cells. In this paper, we have explored a green route to synthesize nanobiochar (NBC) endowed with graphene structure from the hydrothermal carbonization (HTC) of orange peels and evaluated the suitability of this nanomaterial as a nanoplatform for cancer therapy. In order to compare the cancer-targeting ability of different widely used targeting ligands (TL), we have conjugated NBC with biotin, riboflavin, folic acid and hyaluronic acid and have tested, in vitro, their biocompatibility and uptake ability towards a human alveolar cancer cell line (A549 cells). The nanosystems which showed the best biological performances-namely, the biotin- and riboflavin- conjugated systems-have been loaded with the poorly water-soluble drug DHF (5,5-dimethyl-6a-phenyl-3-(trimethylsilyl)-6,6a-dihydrofuro[3,2-b]furan-2(5H)-one) and tested for their anticancer activity. The in vitro biological tests demonstrated the ability of both systems to internalize the drug in A549 cells. In particular, the biotin-functionalized NBC caused cell death percentages to more than double with respect to the drug alone. The reported results also highlight the positive effect of the presence of oxygen-containing functional groups, present on the NBC surface, to improve the water dispersion stability of the DDS and thus make the approach of using this nanomaterial as nanocarrier for poorly water-soluble drugs effective.

13.
Nanomaterials (Basel) ; 11(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685157

RESUMO

Surface decoration by means of metal nanostructures is an effective way to locally modify the electronic properties of materials. The decoration of ZnO nanorods by means of Au nanoparticles was experimentally investigated and modelled in terms of energy band bending. ZnO nanorods were synthesized by chemical bath deposition. Decoration with Au nanoparticles was achieved by immersion in a colloidal solution obtained through the modified Turkevich method. The surface of ZnO nanorods was quantitatively investigated by Scanning Electron Microscopy, Transmission Electron Microscopy and Rutherford Backscattering Spectrometry. The Photoluminescence and Cathodoluminescence of bare and decorated ZnO nanorods were investigated, as well as the band bending through Mott-Schottky electrochemical analyses. Decoration with Au nanoparticles induced a 10 times reduction in free electrons below the surface of ZnO, together with a decrease in UV luminescence and an increase in visible-UV intensity ratio. The effect of decoration was modelled with a nano-Schottky junction at ZnO surface below the Au nanoparticle with a Multiphysics approach. An extensive electric field with a specific halo effect formed beneath the metal-semiconductor interface. ZnO nanorod decoration with Au nanoparticles was shown to be a versatile method to tailor the electronic properties at the semiconductor surface.

14.
Materials (Basel) ; 14(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576513

RESUMO

The role of a layered structure in superconducting pinning properties is still at a debate. The effects of the vortex shape, which can assume for example a staircase form, could influence the interplay with extrinsic pinning coming from the specific defects of the material, thus inducing an effective magnetic field dependence. To enlighten this role, we analysed the angular dependence of flux pinning energy U(H,θ) as a function of magnetic field in FeSe0.5Te0.5 thin film by considering the field components along the ab-plane of the crystal structure and the c-axis direction. U(H,θ) has been evaluated from magneto-resistivity measurements acquired at different orientations between the applied field up to 16 T and FeSe0.5Te0.5 thin films grown on a CaF2 substrate. We observed that the U(H,θ) shows an anisotropic trend as a function of both the intensity and the direction of the applied field. Such a behaviour can be correlated to the presence of extended defects elongated in the ab-planes, thus mimicking a layered superconductor, as we observed in the microstructure of the compound. The comparison of FeSe0.5Te0.5 with other superconducting materials provides a more general understanding on the flux pinning energy in layered superconductors.

15.
Sci Rep ; 11(1): 20100, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635712

RESUMO

The process of developing superconducting materials for large scale applications is mainly oriented to optimize flux pinning and the current carrying capability. A powerful approach to investigate pinning properties is to combine high resolution imaging with transport measurements as a function of the magnetic field orientation, supported by a pinning modelling. We carry out Transmission Electron Microscopy, Electron Energy Loss Spectroscopy and critical current measurements in fields up to 16 T varying the angle between the field and c-axis of Fe(Se,Te) epitaxial thin films deposited on CaF2 substrates. We find evidence of nanoscale domains with different Te:Se stoichiometry and/or rotated and tilted axes, as well as of lattice distortions and two-dimensional defects at the grain boundaries. These elongated domains are tens of nm in size along the in-plane axes. We establish a correlation between these observed microstructural features and the pinning properties, specifically strongly enhanced pinning for the magnetic field oriented in-plane and pinning emerging at higher fields for out-of-plane direction. These features can be accounted for within a model where pinning centers are local variations of the critical temperature and local variations of the mean free path, respectively. The identification of all these growth induced defects acting as effective pinning centers may provide useful information for the optimization of Fe(Se,Te) coated conductors.

16.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947707

RESUMO

Ge-rich Ge-Sb-Te compounds are attractive materials for future phase change memories due to their greater crystallization temperature as it provides a wide range of applications. Herein, we report the self-assembled Ge-rich Ge-Sb-Te/Sb2Te3 core-shell nanowires grown by metal-organic chemical vapor deposition. The core Ge-rich Ge-Sb-Te nanowires were self-assembled through the vapor-liquid-solid mechanism, catalyzed by Au nanoparticles on Si (100) and SiO2/Si substrates; conformal overgrowth of the Sb2Te3 shell was subsequently performed at room temperature to realize the core-shell heterostructures. Both Ge-rich Ge-Sb-Te core and Ge-rich Ge-Sb-Te/Sb2Te3 core-shell nanowires were extensively characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Raman microspectroscopy, and electron energy loss spectroscopy to analyze the surface morphology, crystalline structure, vibrational properties, and elemental composition.

17.
Mater Horiz ; 8(1): 187-196, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821297

RESUMO

In this work we report the local growth of ordered arrays of 3D core-shell chiral nanohelices based on plasmonic gallium metal. The structures can be engineered in a single step using focused ion beam induced deposition, where a Ga+ ion source is used to shape the metallic nanohelix core, while the dielectric precursor is dissociated to create dielectric shells. The solubility of gallium in the different investigated dielectric matrices controls the core-shell thickness ratio of the nanohelices. The chiral plasmonic behaviour of these gallium-based nanostructures is experimentally measured by circularly polarized light transmission through nanostructure arrays and compared with numerical simulations. Large chiroptical effects in the visible range are demonstrated due to the plasmonic effects arising from gallium nanoclusters in the core.

18.
Diagnostics (Basel) ; 11(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808245

RESUMO

Small bowel obstruction (SBO) is a common condition requiring urgent attention that may involve surgical treatment. Imaging is essential for the diagnosis and characterization of SBO because the clinical presentation and results of laboratory tests may be nonspecific. Ultrasound is an excellent initial imaging modality for assisting physicians in the rapid and accurate diagnosis of a variety of pathologies to expedite management. In the case of SBO diagnosis, ultrasound has an overall sensitivity of 92% (95% CI: 89-95%) and specificity of 93% (95% CI: 85-97%); the aim of this review is to examine the criteria for the diagnosis of SBO by ultrasound, which can be divided into diagnostic and staging criteria. The diagnostic criteria include the presence of dilated loops and abnormal peristalsis, while the staging criteria are represented by parietal and valvulae conniventes alterations and by the presence of free extraluminal fluid. Ultrasound has reasonably high accuracy compared to computed tomography (CT) scanning and may substantially decrease the time to diagnosis; moreover, ultrasound is also widely used in the monitoring and follow-up of patients undergoing conservative treatment, allowing the assessment of loop distension and the resumption of peristalsis.

19.
Nanomaterials (Basel) ; 10(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352966

RESUMO

Due to their outstanding physicochemical properties, the next generation of the graphene family-graphene quantum dots (GQDs)-are at the cutting edge of nanotechnology development. GQDs generally possess many hydrophilic functionalities which allow their dispersibility in water but, on the other hand, could interfere with reactions that are mainly performed in organic solvents, as for cycloaddition reactions. We investigated the 1,3-dipolar cycloaddition (1,3-DCA) reactions of the C-ethoxycarbonyl N-methyl nitrone 1a and the newly synthesized C-diethoxyphosphorylpropilidene N-benzyl nitrone 1b with the surface of GQDs, affording the isoxazolidine cycloadducts isox-GQDs 2a and isox-GQDs 2b. Reactions were performed in mild and eco-friendly conditions, through the use of a natural deep eutectic solvent (NADES), free of chloride or any metal ions in its composition, and formed by the zwitterionic trimethylglycine as the -bond acceptor, and glycolic acid as the hydrogen-bond donor. The results reported in this study have for the first time proved the possibility of performing cycloaddition reactions directly to the p-cloud of the GQDs surface. The use of DES for the cycloaddition reactions on GQDs, other than to improve the solubility of reactants, has been shown to bring additional advantages because of the great affinity of these green solvents with aromatic systems.

20.
Nanomaterials (Basel) ; 9(8)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370341

RESUMO

Multi-walled carbon nanotubes (CNTs) decorated with zinc oxide nanoparticles (ZnO NPs) were prepared in isopropanol solution by a simple, room-temperature process and characterized from structural, morphological, electronic, and optical points of view. A strong interaction between ZnO and CNTs is fully confirmed by all the characterization techniques. ZnO-CNTs nanocomposites, with different weight ratios, were deposited as a dense layer between two electrodes, in order to investigate the electrical behaviour. In particular, the electrical response of the nanocomposite layers to UV light irradiation was recorded for a fixed voltage: As the device is exposed to the UV lamp, a sharp current drop takes place and then an increase is observed as the irradiation is stopped. The effect can be explained by adsorption and desorption phenomena taking place on the ZnO nanoparticle surface under irradiation and by charge transfer between ZnO and CNTs, thanks to the strong interaction between the two nanomaterials. The nanocomposite material shows good sensitivity and fast response to UV irradiation. Room temperature and low-cost processes used for the device preparation combined with room temperature and low voltage operational conditions make this methodology very promising for large scale UV detectors applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA