RESUMO
The rapid growth in biological sequence data is revolutionizing our understanding of genotypic diversity and challenging conventional approaches to informatics. With the increasing availability of genomic data, traditional bioinformatic tools require substantial computational time and the creation of ever-larger indices each time a researcher seeks to gain insight from the data. To address these challenges, we pre-computed important relationships between biological entities spanning the Central Dogma of Molecular Biology and captured this information in a relational database. The database can be queried across hundreds of millions of entities and returns results in a fraction of the time required by traditional methods. In this paper, we describe Functional Genomics Platform (formerly known as OMXWare), a comprehensive database relating genotype to phenotype for bacterial life. Continually updated, the Functional Genomics Platform today contains data derived from 200,000 curated, self-consistently assembled genomes. The database stores functional data for over 68 million genes, 52 million proteins, and 239 million domains with associated biological activity annotations from Gene Ontology, KEGG, MetaCyc, and Reactome. The Functional Genomics Platform maps all of the many-to-many connections between each biological entity including the originating genome, gene, protein, and protein domain. Various microbial studies, from infectious disease to environmental health, can benefit from the rich data and connections. We describe the data selection, the pipeline to create and update the Functional Genomics Platform, and the developer tools (Python SDK and REST APIs)which allow researchers to efficiently study microbial life at scale.
Assuntos
Bases de Dados Genéticas , Software , Computação em Nuvem , Genoma , Genômica/métodosRESUMO
Rapid tests for active SARS-CoV-2 infections rely on reverse transcription polymerase chain reaction (RT-PCR). RT-PCR uses reverse transcription of RNA into complementary DNA (cDNA) and amplification of specific DNA (primer and probe) targets using polymerase chain reaction (PCR). The technology makes rapid and specific identification of the virus possible based on sequence homology of nucleic acid sequence and is much faster than tissue culture or animal cell models. However the technique can lose sensitivity over time as the virus evolves and the target sequences diverge from the selective primer sequences. Different primer sequences have been adopted in different geographic regions. As we rely on these existing RT-PCR primers to track and manage the spread of the Coronavirus, it is imperative to understand how SARS-CoV-2 mutations, over time and geographically, diverge from existing primers used today. In this study, we analyze the performance of the SARS-CoV-2 primers in use today by measuring the number of mismatches between primer sequence and genome targets over time and spatially. We find that there is a growing number of mismatches, an increase by 2% per month, as well as a high specificity of virus based on geographic location.