Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(26): 266802, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449729

RESUMO

The persistence of ferroelectricity in ultrathin layers relies critically on screening or compensation of polarization charges which otherwise destabilize the ferroelectric state. At surfaces, charged defects play a crucial role in the screening mechanism triggering novel mixed electrochemical-ferroelectric states. At interfaces, however, the coupling between ferroelectric and electrochemical states has remained unexplored. Here, we make use of the dynamic formation of the oxygen vacancy profile in the nanometer-thick barrier of a ferroelectric tunnel junction to demonstrate the interplay between electrochemical and ferroelectric degrees of freedom at an oxide interface. We fabricate ferroelectric tunnel junctions with a La_{0.7}Sr_{0.3}MnO_{3} bottom electrode and BaTiO_{3} ferroelectric barrier. We use poling strategies to promote the generation and transport of oxygen vacancies at the metallic top electrode. Generated oxygen vacancies control the stability of the ferroelectric polarization and modify its coercive fields. The ferroelectric polarization, in turn, controls the ionization of oxygen vacancies well above the limits of thermodynamic equilibrium, triggering the build up of a Schottky barrier at the interface which can be turned on and off with ferroelectric switching. This interplay between electronic and electrochemical degrees of freedom yields very large values of the electroresistance (more than 10^{6}% at low temperatures) and enables a controlled switching between clockwise and counterclockwise switching modes in the same junction (and consequently, a change of the sign of the electroresistance). The strong coupling found between electrochemical and electronic degrees of freedom sheds light on the growing debate between resistive and ferroelectric switching in ferroelectric tunnel junctions, and moreover, can be the source of novel concepts in memory devices and neuromorphic computing.

2.
Phys Rev Lett ; 122(3): 037601, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30735408

RESUMO

The electronic reconstruction occurring at oxide interfaces may be the source of interesting device concepts for future oxide electronics. Among oxide devices, multiferroic tunnel junctions are being actively investigated as they offer the possibility to modulate the junction current by independently controlling the switching of the magnetization of the electrodes and of the ferroelectric polarization of the barrier. In this Letter, we show that the spin reconstruction at the interfaces of a La_{0.7}Sr_{0.3}MnO_{3}/BaTiO_{3}/La_{0.7}Sr_{0.3}MnO_{3} multiferroic tunnel junction is the origin of a spin filtering functionality that can be turned on and off by reversing the ferroelectric polarization. The ferroelectrically controlled interface spin filter enables a giant electrical modulation of the tunneling magnetoresistance between values of 10% and 1000%, which could inspire device concepts in oxides-based low dissipation spintronics.

3.
Nano Lett ; 15(11): 7526-31, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26441137

RESUMO

The design of artificial vortex pinning landscapes is a major goal toward large scale applications of cuprate superconductors. Although disordered nanometric inclusions have shown to modify their vortex phase diagram and to produce enhancements of the critical current ( MacManus-Driscoll , J. L. ; Foltyn , S. R. ; Jia , Q. X. ; Wang , H. ; Serquis , A. ; Civale , L. ; Maiorov , B. ; Hawley , M. E. ; Maley , M. P. ; Peterson , D. E. Nat. Mater. 2004 , 3 , 439 - 443 and Yamada , Y. ; Takahashi , K. ; Kobayashi , H. ; Konishi , M. ; Watanabe , T. ; Ibi , A. ; Muroga , T. ; Miyata , S. ; Kato , T. ; Hirayama , T. ; Shiohara , Y. Appl. Phys. Lett. 2005 , 87 , 1 - 3 ), the effect of ordered oxide nanostructures remains essentially unexplored. This is due to the very small nanostructure size imposed by the short coherence length, and to the technological difficulties in the nanofabrication process. Yet, the novel phenomena occurring at oxide interfaces open a wide spectrum of technological opportunities to interplay with the superconductivity in cuprates. Here, we show that the unusual long-range suppression of the superconductivity occurring at the interface between manganites and cuprates affects vortex nucleation and provides a novel vortex pinning mechanism. In particular, we show evidence of commensurate pinning in YBCO films with ordered arrays of LCMO ferromagnetic nanodots. Vortex pinning results from the proximity induced reduction of the condensation energy at the vicinity of the magnetic nanodots, and yields an enhanced friction between the nanodot array and the moving vortex lattice in the liquid phase. This result shows that all-oxide ordered nanostructures constitute a powerful, new route for the artificial manipulation of vortex matter in cuprates.

4.
Phys Rev Lett ; 111(24): 247203, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483696

RESUMO

We report a strong effect of interface-induced magnetization on the transport properties of magnetic tunnel junctions consisting of ferromagnetic manganite La0.7Ca0.3MnO3 and insulating cuprate PrBa2Cu3O7. Contrary to the typically observed steady increase of the tunnel magnetoresistance with decreasing temperature, this system exhibits a sudden anomalous decrease at low temperatures. Interestingly, this anomalous behavior can be attributed to the competition between the positive spin polarization of the manganite contacts and the negative spin-filter effect from the interface-induced Cu magnetization.

5.
Nat Commun ; 6: 6306, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25686532

RESUMO

At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO(3) (LFO) and ferromagnetic La(0.7)Sr(0.3)MnO(3) (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show that the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.

6.
Nat Commun ; 5: 4215, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24953219

RESUMO

Electric-field control of magnetism has remained a major challenge which would greatly impact data storage technology. Although progress in this direction has been recently achieved, reversible magnetization switching by an electric field requires the assistance of a bias magnetic field. Here we take advantage of the novel electronic phenomena emerging at interfaces between correlated oxides and demonstrate reversible, voltage-driven magnetization switching without magnetic field. Sandwiching a non-superconducting cuprate between two manganese oxide layers, we find a novel form of magnetoelectric coupling arising from the orbital reconstruction at the interface between interfacial Mn spins and localized states in the CuO2 planes. This results in a ferromagnetic coupling between the manganite layers that can be controlled by a voltage. Consequently, magnetic tunnel junctions can be electrically toggled between two magnetization states, and the corresponding spin-dependent resistance states, in the absence of a magnetic field.

7.
Science ; 321(5889): 676-80, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18669859

RESUMO

The search for electrolyte materials with high oxygen conductivities is a key step toward reducing the operation temperature of fuel cells, which is currently above 700 degrees C. We report a high lateral ionic conductivity, showing up to eight orders of magnitude enhancement near room temperature, in yttria-stabilized zirconia (YSZ)/strontium titanate epitaxial heterostructures. The enhancement of the conductivity is observed, along with a YSZ layer thickness-independent conductance, showing that it is an interface process. We propose that the atomic reconstruction at the interface between highly dissimilar structures (such as fluorite and perovskite) provides both a large number of carriers and a high-mobility plane, yielding colossal values of the ionic conductivity.

9.
Phys Rev Lett ; 94(5): 057002, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783679

RESUMO

We show magnetoresistance in excess of 1000% in trilayers containing highly spin-polarized La0.7Ca0.3MnO3 and high-Tc superconducting YBa2Cu3O7. This large magnetoresistance is reminiscent of the giant magnetoresistance (GMR) in metallic superlattices but with much larger values, and originates at spin imbalance due to the injection of spin-polarized carriers. Furthermore, in contrast to ordinary GMR, the magnetoresistance is intimately related to the superconductivity in the YBa2Cu3O7 layer and vanishes in the normal state. This result, aside from its fundamental importance, may be of interest for the design of novel spintronic devices based on ferromagnet/superconductor structures.

11.
Phys Rev Lett ; 86(22): 5156-9, 2001 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-11384445

RESUMO

Charge neutrality and stoichiometry impose severe restrictions on the mechanisms of epitaxial growth of complex oxides. The fundamental question arises of what is the minimum growth unit when sample thickness is reduced beyond the size of the unit cell. We have investigated the growth mechanism of YBa2Cu3O7 cuprate superconductor, using a consistent approach based on the growth of noninteger numbers of YBa2Cu3O7 layers in YBa(2)Cu(3)O(7)/PrBa(2)Cu3O7 superlattices. Ex situ chemical and structural analysis evidence a 2D block-by-block mechanism in which the minimum growth units are complete unit cell blocks, growing coherently over large lateral distances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA