Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241393

RESUMO

Streptococcus suis serotype 2 is an important encapsulated bacterial swine pathogen and zoonotic agent for which no effective vaccine exists. The interaction with B cells and the humoral response against S. suis are poorly understood despite their likely relevance for a potential vaccine. We evaluated germinal center (GC) B cell kinetics, as well as the production and role of S. suis-specific antibodies following infections in a mouse model. We found that mice infected with S. suis developed GC that peaked 13-21 days post-infection. GC further increased and persisted upon periodic reinfection that mimics real life conditions in swine farms. Anti-S. suis IgM and several IgG subclasses were produced, but antibodies against the S. suis capsular polysaccharide (CPS) were largely IgM. Interestingly, depletion of total IgG from the wild-type mice sera had no effect on bacterial killing by opsonophagocytosis in vitro. Somatic hypermutation and isotype switching were dispensable for controlling the infection or anti-CPS IgM production. However, T cell-deficient (Tcrb-/-) mice were unable to control bacteremia, produce optimal anti-CPS IgM titers, or elicit antibodies with opsonophagocytic activity. SAP deficiency, which prevents GC formation but not extrafollicular B cell responses, ablated anti S. suis-IgG production but maintained IgM production and eliminated the infection. In contrast, B cell deficient mice were unable to control bacteremia. Collectively, our results indicate that the antibody response plays a large role in immunity against S. suis, with GC-independent but T cell-dependent germline IgM being the major effective antibody specificities. Our results further highlight the importance IgM, and potentially anti-CPS antibodies, in clearing S. suis infections and provide insight for future development of S. suis vaccines.


Assuntos
Bacteriemia , Infecções Estreptocócicas , Streptococcus suis , Vacinas , Animais , Camundongos , Suínos , Streptococcus suis/genética , Anticorpos Antibacterianos , Imunoglobulina G , Imunoglobulina M , Linfócitos T , Infecções Estreptocócicas/microbiologia
2.
Vet Res ; 55(1): 34, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504299

RESUMO

Streptococcus suis serotype 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans, responsible for substantial economic losses to the swine industry worldwide. The pathogenesis of infection and the role of bacterial cell wall components in virulence have not been fully elucidated. Lipoproteins, peptidoglycan, as well as lipoteichoic acids (LTA) have all been proposed to contribute to virulence. In the present study, the role of the LTA in the pathogenesis of the infection was evaluated through the characterisation of a mutant of the S. suis serotype 2 strain P1/7 lacking the LtaS enzyme, which mediates the polymerization of the LTA poly-glycerolphosphate chain. The ltaS mutant was confirmed to completely lack LTA and displayed significant morphological defects. Although the bacterial growth of this mutant was not affected, further results showed that LTA is involved in maintaining S. suis bacterial fitness. However, its role in the pathogenesis of the infection appears limited. Indeed, LTA presence reduces self-agglutination, biofilm formation and even dendritic cell activation, which are important aspects of the pathogenesis of the infection caused by S. suis. In addition, it does not seem to play a critical role in virulence using a systemic mouse model of infection.


Assuntos
Doenças dos Roedores , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Humanos , Camundongos , Animais , Suínos , Sorogrupo , Forma Celular , Virulência , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia
3.
Vet Res ; 55(1): 57, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715138

RESUMO

Streptococcus suis is a bacterial pathogen that causes important economic losses to the swine industry worldwide. Since there are no current commercial vaccines, the use of autogenous vaccines applied to gilts/sows to enhance transfer of passive immunity is an attractive alternative to protect weaned piglets. However, there is no universal standardization in the production of autogenous vaccines and the vaccine formulation may be highly different among licenced manufacturing laboratories. In the present study, an autogenous vaccine that included S. suis serotypes 2, 1/2, 5, 7 and 14 was prepared by a licensed laboratory and administrated to gilts using a three-dose program prior to farrowing. The antibody response in gilts as well as the passive transfer of antibodies to piglets was then evaluated. In divergence with previously published data with an autogenous vaccine produced by a different company, the increased response seen in gilts was sufficient to improve maternal antibody transfer to piglets up to 5 weeks of age. However, piglets would still remain susceptible to S. suis disease which often appears during the second part of the nursery period. Vaccination did not affect the shedding of S. suis (as well as that of the specific S. suis serotypes included in the vaccine) by either gilts or piglets. Although all antibiotic treatments were absent during the trial, the clinical protective effect of the vaccination program with the autogenous vaccine could not be evaluated, since limited S. suis cases were present during the trial, confirming the need for a complete evaluation of the clinical protection that must include laboratory confirmation of the aetiological agent involved in the presence of S. suis-associated clinical signs. Further studies to evaluate the usefulness of gilt/sow vaccination with autogenous vaccines to protect nursery piglets should be done.


Assuntos
Autovacinas , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Streptococcus suis/imunologia , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/imunologia , Feminino , Imunidade Materno-Adquirida , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Sorogrupo , Vacinação/veterinária
4.
Vet Res ; 54(1): 1, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604750

RESUMO

Streptococcus suis serotype 2 is an important bacterial pathogen of swine, responsible for substantial economic losses to the swine industry worldwide. The knowledge on the pathogenesis of the infection caused by S. suis is still poorly known. It has been previously described that S. suis possesses at least one lipoprotein with double laminin and zinc (Zn)-binding properties, which was described in the literature as either laminin-binding protein (Lmb, as in the current study), lipoprotein 103, CDS 0330 or AdcAII. In the present study, the role of the Lmb in the pathogenesis of the infection caused by S. suis serotype 2 was dissected. Using isogenic mutants, results showed that Lmb does not play an important role in the laminin-binding activity of S. suis, even when clearly exposed at the bacterial surface. In addition, the presence of this lipoprotein does not influence bacterial adhesion to and invasion of porcine respiratory epithelial and brain endothelial cells and it does not increase the susceptibility of S. suis to phagocytosis. On the other hand, the Lmb was shown to play an important role as cytokine activator when tested in vitro with dendritic cells. Finally, this lipoprotein plays a critical role in Zn acquisition from the host environment allowing bacteria to grow in vivo. The significant lower virulence of the Lmb defective mutant may be related to a combination of a lower bacterial survival due to the incapacity to acquire Zn from their surrounding milieu and a reduced cytokine activation.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Suínos , Laminina/genética , Laminina/metabolismo , Sorogrupo , Citocinas/metabolismo , Células Endoteliais , Zinco/metabolismo , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Doenças dos Suínos/microbiologia
5.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563368

RESUMO

Group B Streptococcus (GBS) is a leading cause of placental infection, termed chorioamnionitis. Chorioamnionitis is associated with an increased risk of neurobehavioral impairments, such as autism spectrum disorders, which are more prominent in males than in female offspring. In a pre-clinical model of chorioamnionitis, a greater inflammatory response was observed in placenta associated with male rather than female fetuses, correlating with the severity of subsequent neurobehavioral impairments. The reason for this sex difference is not understood. Our hypothesis is that androgens upregulate the placental innate immune response in male fetuses. Lewis dams were injected daily from gestational day (G) 18 to 21 with corn oil (vehicle) or an androgen receptor antagonist (flutamide). On G 19, dams were injected with saline (control) or GBS. Maternal, fetal sera and placentas were collected for protein assays and in situ analyses. Our results showed that while flutamide alone had no effect, a decrease in placental concentration of pro-inflammatory cytokines and infiltration of polymorphonuclear cells was observed in flutamide/infected compared to vehicle/infected groups. These results show that androgens upregulate the placental innate immune response and thus may contribute to the skewed sex ratio towards males observed in several developmental impairments resulting from perinatal infection/inflammation.


Assuntos
Corioamnionite , Infecções Estreptocócicas , Androgênios/metabolismo , Androgênios/farmacologia , Corioamnionite/metabolismo , Feminino , Flutamida/farmacologia , Humanos , Imunidade Inata , Masculino , Placenta/metabolismo , Gravidez , Infecções Estreptocócicas/complicações , Streptococcus agalactiae
6.
Vet Res ; 52(1): 133, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666827

RESUMO

Streptococcus suis is an important swine pathogen responsible for economic losses to the swine industry worldwide. There is no effective commercial vaccine against S. suis. The use of autogenous ("bacterin") vaccines to control S. suis outbreaks is a frequent preventive measure in the field, although scientific data on immunogenicity and reduction in mortality and morbidity are scarce. The goal of our study is to experimentally evaluate the immunogenicity and protective efficacy against homologous challenge in weaned piglets of a S. suis serotype 2 bacterin-based vaccine formulated with six different commercial adjuvants (Alhydrogel®, Emulsigen®-D, Quil-A®, Montanide™ ISA 206 VG, Montanide™ ISA 61 VG, and Montanide™ ISA 201 VG). The vaccine formulated with Montanide™ ISA 61 VG induced a significant increase in anti-S. suis antibodies, including both IgG1 and IgG2 subclasses, protected against mortality and significantly reduced morbidity and severity of clinical signs. Vaccines formulated with Montanide ISA 206 VG or Montanide ISA 201 VG also induced a significant increase in anti-S. suis antibodies and showed partial protection and reduction of clinical signs severity. Vaccines formulated with Alhydrogel®, Emulsigen®-D, or Quil-A® induced a low and IgG1-shifted antibody response and failed to protect vaccinated piglets against a homologous challenge. In conclusion, the type of adjuvant used in the vaccine formulation significantly influenced the immune response and efficacy of the vaccine against a homologous challenge.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas Bacterianas/administração & dosagem , Infecções Estreptocócicas/veterinária , Streptococcus suis/imunologia , Doenças dos Suínos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Vacinas Bacterianas/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia , Desmame
7.
Vet Res ; 52(1): 49, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743838

RESUMO

Streptococcus suis is one of the most important bacterial swine pathogens affecting post-weaned piglets, causing mainly meningitis, arthritis and sudden death. It not only results in severe economic losses but also raises concerns over animal welfare and antimicrobial resistance and remains an important zoonotic agent in some countries. The definition and diagnosis of S. suis-associated diseases can be complex. Should S. suis be considered a primary or secondary pathogen? The situation is further complicated when referring to respiratory disease, since the pathogen has historically been considered as a secondary pathogen within the porcine respiratory disease complex (PRDC). Is S. suis a respiratory or strictly systemic pathogen? S. suis is a normal inhabitant of the upper respiratory tract, and the presence of potentially virulent strains alone does not guarantee the appearance of clinical signs. Within this unclear context, it has been largely proposed that co-infection with some viral and bacterial pathogens can significantly influence the severity of S. suis-associated diseases and may be the key to understanding how the infection behaves in the field. In this review, we critically addressed studies reporting an epidemiological link (mixed infections or presence of more than one pathogen at the same time), as well as in vitro and in vivo studies of co-infection of S. suis with other pathogens and discussed their limitations and possibilities for improvement and proposed recommendations for future studies.


Assuntos
Coinfecção/veterinária , Infecções Estreptocócicas/veterinária , Streptococcus suis/fisiologia , Doenças dos Suínos/microbiologia , Animais , Coinfecção/complicações , Coinfecção/microbiologia , Coinfecção/virologia , Infecções Estreptocócicas/microbiologia , Sus scrofa , Suínos
8.
Vet Res ; 52(1): 145, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34924012

RESUMO

Streptococcus suis is a zoonotic pathogen of swine involved in arthritis, polyserositis, and meningitis. Colonization of piglets by S. suis is very common and occurs early in life. The clinical outcome of infection is influenced by the virulence of the S. suis strains and the immunity of the animals. Here, the role of innate immunity was studied in cesarean-derived colostrum-deprived piglets inoculated intranasally with either virulent S. suis strain 10 (S10) or non-virulent S. suis strain T15. Colonization of the inoculated piglets was confirmed at the end of the study by PCR and immunohistochemistry. Fever (≥40.5 °C) was more prevalent in piglets inoculated with S10 compared to T15 at 4 h after inoculation. During the 3 days of monitoring, no other major clinical signs were detected. Accordingly, only small changes in transcription of genes associated with the antibacterial innate immune response were observed at systemic sites, with S10 inducing an earlier response than T15 in blood. Local inflammatory response to the inoculation, evaluated by transcriptional analysis of selected genes in nasal swabs, was more sustained in piglets inoculated with the virulent S10, as demonstrated by transcription of inflammation-related genes, such as IL1B, IL1A, and IRF7. In contrast, most of the gene expression changes in trachea, lungs, and associated lymph nodes were observed in response to the non-virulent T15 strain. Thus, S. suis colonization in the absence of systemic infection induces an innate immune response in piglets that appears to be related to the virulence potential of the colonizing strain.


Assuntos
Imunidade Inata , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Virulência , Animais , Imunidade Inata/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/virologia , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
9.
BMC Vet Res ; 17(1): 72, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546699

RESUMO

BACKGROUND: Streptococcus suis is an important pathogen that causes severe diseases mostly in weaned piglets. Only available vaccines in the field are those composed of killed bacteria (bacterins) but data about their effectiveness are missing. We report here a field study on the immunological response induced by an autogenous vaccine applied in pre-parturient sows. Using a farm with recurrent S. suis serotype 7 problems, the study was divided in three experiments: (I) Sows received the vaccine at 7 and 3 weeks pre-farrowing. (II) Replacement gilts introduced to the herd received the vaccine at 4 and 7 weeks after their entry in quarantine and a boost 3 weeks pre-farrowing. (III) Gilts from experiment II received another boost 3 weeks pre-farrowing at their 3rd/4th parity. Levels, isotype profile and opsonophagocytosis capacity of the serum antibodies induced by vaccination were evaluated in sows and maternal immunity in piglets. RESULTS: In sows (I), the vaccine induced a slight, albeit significant, increase in anti-S. suis total antibodies after 2 doses when compare to basal levels already present in the animals. These antibodies showed a high opsonic capacity in vitro, highlighting their potential protective capacity. A gilt vaccination program of 3 doses (II) resulted in a significant increase in anti-S. suis total antibodies. Levels of maternal immunity transferred to piglets were high at 7 days of age, but rapidly decreased by 18 days of age. A gilt vaccination program ensued a higher transfer of maternal immunity in piglets compared to control animals; nevertheless duration was not improved at 18 day-old piglets. The vaccine response in both gilts and sows was mainly composed of IgG1 subclass, which was also the main Ig transferred to piglets. IgG2 subclass was also found in piglets, but its level was not increased by vaccination. Finally, a recall IgG1 response was induced by another boost vaccination at 3rd/4th parity (III), indicating that the vaccine induced the establishment of a lasting memory response in the herd. CONCLUSIONS: Overall, an optimal gilt/sow vaccination program might result in increased antibody responses; nevertheless duration of maternal immunity would not last long enough to protect post-weaned piglets.


Assuntos
Autovacinas/administração & dosagem , Infecções Estreptocócicas/veterinária , Streptococcus suis/imunologia , Doenças dos Suínos/prevenção & controle , Animais , Animais Recém-Nascidos , Anticorpos Antibacterianos/sangue , Feminino , Imunoglobulina G/sangue , Gravidez , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Sus scrofa , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Vacinação/veterinária
10.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31818962

RESUMO

Streptococcus suis is an important porcine bacterial pathogen and zoonotic agent responsible for sudden death, septic shock, and meningitis. These pathologies are a consequence of elevated bacterial replication leading to exacerbated and uncontrolled inflammation, a hallmark of the S. suis systemic and central nervous system (CNS) infections. Monocytes and neutrophils are immune cells involved in various functions, including proinflammatory mediator production. Moreover, monocytes are composed of two main subsets: shorter-lived inflammatory monocytes and longer-lived patrolling monocytes. However, regardless of their presence in blood and the fact that S. suis-induced meningitis is characterized by infiltration of monocytes and neutrophils into the CNS, their role during the S. suis systemic and CNS diseases remains unknown. Consequently, we hypothesized that monocytes and neutrophils participate in S. suis infection via bacterial clearance and inflammation. Results demonstrated that inflammatory monocytes and neutrophils regulate S. suis-induced systemic disease via their role in inflammation required for bacterial burden control. In the CNS, inflammatory monocytes contributed to exacerbation of S. suis-induced local inflammation, while neutrophils participated in bacterial burden control. However, development of clinical CNS disease was independent of both cell types, indicating that resident immune cells are mostly responsible for S. suis-induced CNS inflammation and clinical disease and that inflammatory monocyte and neutrophil infiltration is a consequence of the induced inflammation. In contrast, the implication of patrolling monocytes was minimal throughout the S. suis infection. Consequently, this study demonstrates that while inflammatory monocytes and neutrophils modulate S. suis-induced systemic inflammation and disease, they are not critical for CNS disease development.


Assuntos
Monócitos/imunologia , Neutrófilos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Animais , Modelos Animais de Doenças , Inflamação/imunologia , Camundongos , Infecções Estreptocócicas/microbiologia
11.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747605

RESUMO

Streptococcus suis is an encapsulated bacterium and one of the most important swine pathogens and a zoonotic agent for which no effective vaccine exists. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. In addition to the previously known serotypes 2 and 14, which are nonimmunogenic, we have recently purified and described the CPS structures for serotypes 1, 1/2, 3, 7, 8, and 9. Here, we aimed to elucidate how these new structurally diverse CPSs interact with the immune system to generate anti-CPS antibody responses. CPS-stimulated dendritic cells produced significant levels of C-C motif chemokine ligand 3 (CCL3), partially via Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88-dependent pathways, and CCL2, via TLR-independent mechanisms. Mice immunized with purified serotype 3 CPS adjuvanted with TiterMax Gold produced an opsonizing IgG response, whereas other CPSs or adjuvants were negative. Mice hyperimmunized with heat-killed S. suis serotypes 3 and 9 both produced anti-CPS type 1 IgGs, whereas serotypes 7 and 8 remained negative. Also, mice infected with sublethal doses of S. suis serotype 3 produced primary anti-CPS IgM and IgG responses, of which only IgM were boosted after a secondary infection. In contrast, mice sublethally infected with S. suis serotype 9 produced weak anti-CPS IgM and IgG responses following a secondary infection. This study provides important information on the divergent evolution of CPS serotypes with highly different structural and/or biochemical properties within S. suis and their interaction with the immune system.


Assuntos
Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/imunologia , Imunoglobulina G/imunologia , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/química , Cápsulas Bacterianas/genética , Quimiocinas/imunologia , Células Dendríticas/imunologia , Imunização , Imunoglobulina M/imunologia , Camundongos , Fator 88 de Diferenciação Mieloide/imunologia , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/química , Sorogrupo , Infecções Estreptocócicas/microbiologia , Streptococcus suis/genética , Receptor 2 Toll-Like/imunologia
12.
Int Immunol ; 31(11): 697-714, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944920

RESUMO

Streptococcus suis serotype 2 is an important porcine bacterial pathogen and a zoonotic agent responsible for sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the systemic and central nervous system (CNS) infections. However, S. suis serotype 2 strains are genetically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies. Yet, most studies have used 'classical' virulent Eurasian ST1 or ST7 strains, even though ST25 and ST28 strains account for most isolates in North America. While recognition of S. suis by innate immune cells has been associated with the myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptor (TLR) pathway in vitro, particularly surface-associated TLR2, little information is available regarding its role in vivo. This study demonstrates for the first time a differential role of MyD88 signaling in S. suis-induced systemic and CNS diseases, regardless of strain background diversity. The MyD88-dependent pathway is critical for the development of systemic disease via its role in inflammation, which subsequently controls bacterial burden. However, and differently from what has been described in vitro, TLR2 and TLR4 individually do not contribute to systemic disease, suggesting possible compensation in their absence and/or a collaborative role with other MyD88-dependent TLRs. On the other hand, CNS disease does not necessarily require MyD88 signaling and, consequently, neither TLR2 nor TLR4, suggesting a partial implication of other pathways. Finally, regardless of its notable heterogeneity, recognition of S. suis serotype 2 appears to be similar, indicating that recognized components are conserved motifs.


Assuntos
Doenças do Sistema Nervoso Central/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Streptococcus suis/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia
13.
PLoS Pathog ; 13(10): e1006647, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28968468

RESUMO

Interferon regulatory factor-8 (IRF-8) is critical for Th1 cell differentiation and negatively regulates myeloid cell development including myeloid-derived suppressor cells (MDSC). MDSC expand during infection with various pathogens including the gastrointestinal (GI) nematode Heligmosomoides polygyrus bakeri (Hpb). We investigated if IRF-8 contributes to Th2 immunity to Hpb infection. Irf8 expression was down-regulated in MDSC from Hpb-infected C57BL/6 (B6) mice. IRF-8 deficient Irf8-/- and BXH-2 mice had significantly higher adult worm burdens than B6 mice after primary or challenge Hpb infection. During primary infection, MDSC expanded to a significantly greater extent in mesenteric lymph nodes (MLN) and spleens of Irf8-/- and BXH-2 than B6 mice. CD4+GATA3+ T cells numbers were comparable in MLN of infected B6 and IRF-8 deficient mice, but MLN cells from infected IRF-8 deficient mice secreted significantly less parasite-specific IL-4 ex vivo. The numbers of alternatively activated macrophages in MLN and serum levels of Hpb-specific IgG1 and IgE were also significantly less in infected Irf8-/- than B6 mice. The frequencies of antigen-experienced CD4+CD11ahiCD49dhi cells that were CD44hiCD62L- were similar in MLN of infected Irf8-/- and B6 mice, but the proportions of CD4+GATA3+ and CD4+IL-4+ T cells were lower in infected Irf8-/- mice. CD11b+Gr1+ cells from naïve or infected Irf8-/- mice suppressed CD4+ T cell proliferation and parasite-specific IL-4 secretion in vitro albeit less efficiently than B6 mice. Surprisingly, there were significantly more CD4+ T cells in infected Irf8-/- mice, with a higher frequency of CD4+CD25+Foxp3+ T (Tregs) cells and significantly higher numbers of Tregs than B6 mice. In vivo depletion of MDSC and/or Tregs in Irf8-/- mice did not affect adult worm burdens, but Treg depletion resulted in higher egg production and enhanced parasite-specific IL-5, IL-13, and IL-6 secretion ex vivo. Our data thus provide a previously unrecognized role for IRF-8 in Th2 immunity to a GI nematode.


Assuntos
Gastroenteropatias/imunologia , Fatores Reguladores de Interferon/imunologia , Células Supressoras Mieloides/imunologia , Infecções por Nematoides/imunologia , Nematospiroides dubius/imunologia , Células Th2/imunologia , Animais , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Fatores Reguladores de Interferon/efeitos dos fármacos , Fatores Reguladores de Interferon/genética , Interleucina-4/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia
14.
Vet Res ; 50(1): 52, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262357

RESUMO

Streptococcus suis serotype 2 is an important porcine pathogen and zoonotic agent causing sudden death, septic shock and meningitis, with exacerbated inflammation being a hallmark of the infection. A rapid, effective and balanced innate immune response against S. suis is critical to control bacterial growth without causing excessive inflammation. Even though interleukin (IL)-1 is one of the most potent and earliest pro-inflammatory mediators produced, its role in the S. suis pathogenesis has not been studied. We demonstrated that a classical virulent European sequence type (ST) 1 strain and the highly virulent ST7 strain induce important levels of IL-1 in systemic organs. Moreover, bone marrow-derived dendritic cells and macrophages contribute to its production, with the ST7 strain inducing higher levels. To better understand the underlying mechanisms involved, different cellular pathways were studied. Independently of the strain, IL-1ß production required MyD88 and involved recognition via TLR2 and possibly TLR7 and TLR9. This suggests that the recognized bacterial components are similar and conserved between strains. However, very high levels of the pore-forming toxin suilysin, produced only by the ST7 strain, are required for efficient maturation of pro-IL-1ß via activation of different inflammasomes resulting from pore formation and ion efflux. Using IL-1R-/- mice, we demonstrated that IL-1 signaling plays a beneficial role during S. suis systemic infection by modulating the inflammation required to control and clear bacterial burden, thus promoting host survival. Beyond a certain threshold, however, S. suis-induced inflammation cannot be counterbalanced by this signaling, making it difficult to discriminate its role.


Assuntos
Imunidade Inata , Inflamação/veterinária , Interleucina-1/metabolismo , Infecções Estreptocócicas/veterinária , Streptococcus suis/fisiologia , Doenças dos Suínos/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sorogrupo , Transdução de Sinais , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Suínos , Doenças dos Suínos/imunologia
15.
J Biol Chem ; 291(16): 8387-98, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26912653

RESUMO

The capsular polysaccharide (CPS) is a major virulence factor in many encapsulated pathogens, as it is the case for Streptococcus suis, an important swine pathogen and emerging zoonotic agent. Moreover, the CPS is the antigen at the origin of S. suis classification into serotypes. Hence, analyses of the CPS structure are an essential step to dissect its role in virulence and the serological relations between important serotypes. Here, the CPSs of serotypes 1 and 1/2 were purified and characterized for the first time. Chemical and spectroscopic data gave the following repeating unit sequences: [6)[Neu5Ac(α2-6)GalNAc(ß1-4)GlcNAc(ß1-3)]Gal(ß1-3)Gal(ß1-4)Glc(ß1-]n (serotype 1) and [4)[Neu5Ac(α2-6)GalNAc(ß1-4)GlcNAc(ß1-3)]Gal(ß1-4)[Gal(α1-3)]Rha(ß1-4)Glc(ß1-]n (serotype 1/2). The Sambucus nigra lectin, which recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence, showed binding to both CPSs. Compared with previously characterized serotype 14 and 2 CPSs, N-acetylgalactosamine replaces galactose as the sugar bearing the sialic acid residue in the side chain. Serological analyses of the cross-reaction of serotype 1/2 with serotypes 1 and 2 and that between serotypes 1 and 14 suggested that the side chain, and more particularly the terminal sialic acid, constitutes one important epitope for serotypes 1/2 and 2. The side chain is also an important serological determinant for serotype 1, yet sialic acid seems to play a limited role. In contrast, the side chain does not seem to be part of a major epitope for serotype 14. These results contribute to the understanding of the relationship between S. suis serotypes and provide the basis for improving diagnostic tools.


Assuntos
Cápsulas Bacterianas/imunologia , Polissacarídeos Bacterianos/imunologia , Sorogrupo , Streptococcus suis/imunologia , Cápsulas Bacterianas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Streptococcus suis/metabolismo
16.
Vet Res ; 48(1): 10, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219415

RESUMO

Streptococcus suis (S. suis) is an important swine pathogen and an emerging zoonotic agent. Most clinical S. suis strains express capsular polysaccharides (CPS), which can be typed by antisera using the coagglutination test. In this study, 79 S. suis strains recovered from diseased pigs in Canada and which could not be typed using antisera were further characterized by capsular gene typing and sequencing. Four patterns of cps locus were observed: (1) fifteen strains were grouped into previously reported serotypes but presented several mutations in their cps loci, when compared to available data from reference strains; (2) seven strains presented a complete deletion of the cps locus, which would result in an inability to synthesize capsule; (3) forty-seven strains were classified in recently described novel cps loci (NCLs); and (4) ten strains carried novel NCLs not previously described. Different virulence gene profiles (based on the presence of mrp, epf, and/or sly) were observed in these non-serotypeable strains. This study provides further insight in understanding the genetic characteristics of cps loci in non-serotypeable S. suis strains recovered from diseased animals. When using a combination of the previously described 35 serotypes and the complete NCL system, the number of untypeable strains recovered from diseased animals in Canada would be significantly reduced.


Assuntos
Cápsulas Bacterianas/genética , Polissacarídeos Bacterianos/genética , Infecções Estreptocócicas/veterinária , Streptococcus suis/genética , Doenças dos Suínos/microbiologia , Animais , Canadá/epidemiologia , DNA Bacteriano/genética , Loci Gênicos/genética , Técnicas de Genotipagem/veterinária , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA/veterinária , Sorotipagem/veterinária , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Suínos/microbiologia , Doenças dos Suínos/epidemiologia
17.
Infect Immun ; 84(7): 2059-2075, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27113360

RESUMO

Streptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 µg of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections.


Assuntos
Cápsulas Bacterianas/imunologia , Glicoconjugados/imunologia , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus suis/imunologia , Vacinas Conjugadas/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Feminino , Imunização , Switching de Imunoglobulina , Imunomodulação , Camundongos , Oligodesoxirribonucleotídeos , Sorogrupo , Infecções Estreptocócicas/mortalidade , Infecções Estreptocócicas/prevenção & controle , Streptococcus suis/classificação , Suínos
18.
Infect Immun ; 83(1): 441-53, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25385801

RESUMO

Streptococcus suis serotype 2 is an extracellular encapsulated bacterium that causes severe septicemia and meningitis in swine and humans. Albeit crucial in the fight against encapsulated bacteria, the nature of the capsular polysaccharide (CPS)-specific antibody (Ab) response during S. suis type 2 infection is unknown. We compared for the first time the features of CPS-specific versus protein-specific Ab responses during experimental infections with live virulent S. suis type 2 in mice. The primary protein-specific Ab response was dominated by both type 1 and 2 IgG subclasses, whereas IgM titers were more modest. The secondary protein-specific Ab response showed all of the features of a memory response with faster kinetics and boosted the titers of all Ig isotypes. In contrast, the primary CPS-specific Ab response was either inexistent or had titers only slightly higher than those in noninfected animals and was essentially composed of IgM. A poor CPS-specific memory response was observed, with only a moderate boost in IgM titers and no IgG. Both protein- and CPS-specific Ab responses were Toll-like receptor 2 independent. By using S. suis type 2 strains of European or North American origin, the poor CPS-specific Ab response was demonstrated to be independent of the genotypic/phenotypic diversity of the strain within serotype 2. Finally, the CPS-specific Ab response was also impaired and lacked isotype switching in S. suis-infected pigs, the natural host of the bacterium. The better resistance of preinfected animals to reinfection with the same strain of S. suis type 2 might thus more likely be related to the development of a protein rather than CPS Ab response.


Assuntos
Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Polissacarídeos Bacterianos/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/imunologia , Animais , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Feminino , Imunoglobulina M/sangue , Memória Imunológica , Camundongos Endogâmicos C57BL , Sorogrupo , Streptococcus suis/classificação , Suínos
19.
Infect Immun ; 82(5): 1778-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549326

RESUMO

Streptococcus suis is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for early high mortality in septic shock-like syndrome cases. Polyunsaturated fatty acids (PUFAs) may contribute to regulating inflammatory processes. This study shows that mouse infection by S. suis is accompanied by an increase of arachidonic acid, a proinflammatory omega-6 (ω-6) PUFA, and by a decrease of docosahexaenoic acid, an anti-inflammatory ω-3 PUFA. Macrophages infected with S. suis showed activation of mitogen-activated protein kinase pathways and cyclooxygenase-2 upregulation. Fenretinide, a synthetic vitamin A analog, reduced in vitro expression of inflammatory mediators. Pretreatment of mice with fenretinide significantly improved their survival by reducing systemic proinflammatory cytokines during the acute phase of an S. suis infection. These findings indicate a beneficial effect of fenretinide in diminishing the expression of inflammation and improving survival during an acute infection by a virulent S. suis strain.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus suis/fisiologia , Animais , Anticarcinógenos/farmacologia , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-6/sangue , Fenretinida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estreptocócicas/sangue , Zoonoses
20.
BMC Vet Res ; 10: 86, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24708855

RESUMO

BACKGROUND: Swine influenza is a highly contagious viral infection in pigs affecting the respiratory tract that can have significant economic impacts. Streptococcus suis serotype 2 is one of the most important post-weaning bacterial pathogens in swine causing different infections, including pneumonia. Both pathogens are important contributors to the porcine respiratory disease complex. Outbreaks of swine influenza virus with a significant level of co-infections due to S. suis have lately been reported. In order to analyze, for the first time, the transcriptional host response of swine tracheal epithelial (NPTr) cells to H1N1 swine influenza virus (swH1N1) infection, S. suis serotype 2 infection and a dual infection, we carried out a comprehensive gene expression profiling using a microarray approach. RESULTS: Gene clustering showed that the swH1N1 and swH1N1/S. suis infections modified the expression of genes in a similar manner. Additionally, infection of NPTr cells by S. suis alone resulted in fewer differentially expressed genes compared to mock-infected cells. However, some important genes coding for inflammatory mediators such as chemokines, interleukins, cell adhesion molecules, and eicosanoids were significantly upregulated in the presence of both pathogens compared to infection with each pathogen individually. This synergy may be the consequence, at least in part, of an increased bacterial adhesion/invasion of epithelial cells previously infected by swH1N1, as recently reported. CONCLUSION: Influenza virus would replicate in the respiratory epithelium and induce an inflammatory infiltrate comprised of mononuclear cells and neutrophils. In a co-infection situation, although these cells would be unable to phagocyte and kill S. suis, they are highly activated by this pathogen. S. suis is not considered a primary pulmonary pathogen, but an exacerbated production of proinflammatory mediators during a co-infection with influenza virus may be important in the pathogenesis and clinical outcome of S. suis-induced respiratory diseases.


Assuntos
Células Epiteliais/microbiologia , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Vírus da Influenza A Subtipo H1N1/fisiologia , Streptococcus suis/fisiologia , Suínos , Traqueia/citologia , Animais , Linhagem Celular , Coinfecção , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA