Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Sci Technol ; 49(6): 3769-77, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25723056

RESUMO

Biodegradation-promoting additives for polymers are increasingly being used around the world with the claim that they effectively render commercial polymers biodegradable. However, there is a lot of uncertainty about their effectiveness in degrading polymers in different environments. In this study, we evaluated the effect of biodegradation-promoting additives on the biodegradation of polyethylene (PE) and polyethylene terephthalate (PET). Biodegradation was evaluated in compost, anaerobic digestion, and soil burial environments. None of the five different additives tested significantly increased biodegradation in any of these environments. Thus, no evidence was found that these additives promote and/or enhance biodegradation of PE or PET polymers. So, anaerobic and aerobic biodegradation are not recommended as feasible disposal routes for nonbiodegradable plastics containing any of the five tested biodegradation-promoting additives.


Assuntos
Plásticos/farmacologia , Anaerobiose , Biodegradação Ambiental/efeitos dos fármacos , Meio Ambiente , Polietileno/farmacologia , Polietilenotereftalatos/farmacologia , Solo/química , Fatores de Tempo
2.
Polymers (Basel) ; 12(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028695

RESUMO

This study examined the effect of nanoclays and surfactant on the hydrolytic degradation and biodegradation of poly(lactic acid) (PLA) and PLA nanocomposites. Organomodified montmorillonite (OMMT), unmodified montmorillonite (MMT) and an organomodifier (surfactant) for MMT (QAC) were extruded with PLA to produce PLA nanocomposites. The films were produced with the same initial molecular weight, thickness and crystallinity since these properties have a significant effect on the biodegradation process. The biodegradation experiments were carried out in an in-house built direct measurement respirometric system and were evaluated in inoculated vermiculite and vermiculite media for extended periods of time. Hydrolysis experiments were also conducted separately to decouple the abiotic/hydrolysis phase. The results showed no significant variation in the mineralization of PLA nanocomposites as compared to pristine PLA. The addition of nanoclays did not enhance the biodegradability of PLA when the initial parameters were strictly controlled. The hydrolysis test indicated that the nanoclays and surfactant did not aid in the degradation of PLA.

3.
Polymers (Basel) ; 10(2)2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30966238

RESUMO

Poly(lactic acid) (PLA), a well-known biodegradable and compostable polymer, was used in this study as a model system to determine if the addition of nanoclays affects its biodegradation in simulated composting conditions and whether the nanoclays impact the microbial population in a compost environment. Three different nanoclays were studied due to their different surface characteristics but similar chemistry: organo-modified montmorillonite (OMMT), Halloysite nanotubes (HNT), and Laponite® RD (LRD). Additionally, the organo-modifier of MMT, methyl, tallow, bis-2-hydroxyethyl, quaternary ammonium (QAC), was studied. PLA and PLA bio-nanocomposite (BNC) films were produced, characterized, and used for biodegradation evaluation with an in-house built direct measurement respirometer (DMR) following the analysis of evolved CO2 approach. A biofilm formation essay and scanning electron microscopy were used to evaluate microbial attachment on the surface of PLA and BNCs. The results obtained from four different biodegradation tests with PLA and its BNCs showed a significantly higher mineralization of the films containing nanoclay in comparison to the pristine PLA during the first three to four weeks of testing, mainly attributed to the reduction in the PLA lag time. The effect of the nanoclays on the initial molecular weight during processing played a crucial role in the evolution of CO2. PLA-LRD5 had the greatest microbial attachment on the surface as confirmed by the biofilm test and the SEM micrographs, while PLA-QAC0.4 had the lowest biofilm formation that may be attributed to the inhibitory effect also found during the biodegradation test when the QAC was tested by itself.

4.
Food Res Int ; 103: 515-528, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389642

RESUMO

Migration studies of chemicals from contact materials have been widely conducted due to their importance in determining the safety and shelf life of a food product in their packages. The US Food and Drug Administration (FDA) and the European Food Safety Authority (EFSA) require this safety assessment for food contact materials. So, migration experiments are theoretically designed and experimentally conducted to obtain data that can be used to assess the kinetics of chemical release. In this work, a parameter estimation approach was used to review and to determine the mass transfer partition and diffusion coefficients governing the migration process of eight antioxidants from poly(lactic acid), PLA, based films into water/ethanol solutions at temperatures between 20 and 50°C. Scaled sensitivity coefficients were calculated to assess simultaneously estimation of a number of mass transfer parameters. An optimal experimental design approach was performed to show the importance of properly designing a migration experiment. Additional parameters also provide better insights on migration of the antioxidants. For example, the partition coefficients could be better estimated using data from the early part of the experiment instead at the end. Experiments could be conducted for shorter periods of time saving time and resources. Diffusion coefficients of the eight antioxidants from PLA films were between 0.2 and 19×10-14m2/s at ~40°C. The use of parameter estimation approach provided additional and useful insights about the migration of antioxidants from PLA films.


Assuntos
Antioxidantes/análise , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Embalagem de Alimentos/métodos , Modelos Teóricos , Poliésteres/análise , Difusão , Inocuidade dos Alimentos , Cinética , Poliésteres/efeitos adversos , Medição de Risco , Temperatura
5.
Macromol Biosci ; 7(3): 255-77, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17370278

RESUMO

Packaging waste accounted for 78.81 million tons or 31.6% of the total municipal solid waste (MSW) in 2003 in the USA, 56.3 million tons or 25% of the MSW in 2005 in Europe, and 3.3 million tons or 10% of the MSW in 2004 in Australia. Currently, in the USA the dominant method of packaging waste disposal is landfill, followed by recycling, incineration, and composting. Since landfill occupies valuable space and results in the generation of greenhouse gases and contaminants, recovery methods such as reuse, recycling and/or composting are encouraged as a way of reducing packaging waste disposal. Most of the common materials used in packaging (i.e., steel, aluminum, glass, paper, paperboard, plastics, and wood) can be efficiently recovered by recycling; however, if packaging materials are soiled with foods or other biological substances, physical recycling of these materials may be impractical. Therefore, composting some of these packaging materials is a promising way to reduce MSW. As biopolymers are developed and increasingly used in applications such as food, pharmaceutical, and consumer goods packaging, composting could become one of the prevailing methods for disposal of packaging waste provided that industry, governments, and consumers encourage and embrace this alternative. The main objective of this article is to provide an overview of the current situation of packaging compostability, to describe the main mechanisms that make a biopolymer compostable, to delineate the main methods to compost these biomaterials, and to explain the main standards for assessing compostability, and the current status of biopolymer labeling. Biopolymers such as polylactide and poly(hydroxybutyrate) are increasingly becoming available for use in food, medical, and consumer goods packaging applications. The main claims of these new biomaterials are that they are obtained from renewable resources and that they can be biodegraded in biological environments such as soil and compost. Although recycling could be energetically more favorable than composting for these materials, it may not be practical because of excessive sorting and cleaning requirements. Therefore, the main focus is to dispose them by composting. So far, there is no formal agreement between companies, governments and consumers as to how this packaging composting will take place; therefore, the main drivers for their use have been green marketing and pseudo-environmental consciousness related to high fuel prices. Packaging compostability could be an alternative for the disposal of biobased materials as long as society as a whole is willing to formally address the challenge to clearly understand the cradle-to-grave life of a compostable package, and to include these new compostable polymers in food, manure, or yard waste composting facilities.


Assuntos
Biopolímeros/metabolismo , Conservação dos Recursos Naturais , Plásticos/metabolismo , Embalagem de Produtos , Solo , Biopolímeros/química , Humanos , Teste de Materiais , Estrutura Molecular , Plásticos/química , Eliminação de Resíduos/métodos , Eliminação de Resíduos/normas , Sociedades
6.
Macromol Biosci ; 4(9): 835-64, 2004 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-15468294

RESUMO

Polylactide polymers have gained enormous attention as a replacement for conventional synthetic packaging materials in the last decade. By being truly biodegradable, derived from renewable resources and by providing consumers with extra end-use benefits such as avoiding paying the "green tax" in Germany or meeting environmental regulations in Japan, polylactides (PLAs) are a growing alternative as a packaging material for demanding markets. The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material. PLA films have better ultraviolet light barrier properties than low density polyethylene (LDPE), but they are slightly worse than those of cellophane, polystyrene (PS) and poly(ethylene terephthalate) (PET). PLA films have mechanical properties comparable to those of PET and better than those of PS. PLA also has lower melting and glass transition temperatures than PET and PS. The glass transition temperature of PLA changes with time. Humidity between 10 and 95% and storage temperatures of 5 to 40 degrees C do not have an effect on the transition temperature of PLA, which can be explained by its low water sorption values (i.e. <100 ppm at Aw = 1). PLA seals well at temperatures below the melting temperature but an appreciable shrinking of the films has been noted when the material is sealed near its melting temperature. Solubility parameter predictions indicate that PLA will interact with nitrogen compounds, anhydrides and some alcohols and that it will not interact with aromatic hydrocarbons, ketones, esters, sulfur compounds or water. The CO2, O2 and water permeability coefficients of PLA are lower than those of PS and higher than those of PET. Its barrier to ethyl acetate and D-limonene is comparable to PET. The amount of lactic acid and its derivatives that migrate to food simulant solutions from PLA is much lower than any of the current average dietary lactic acid intake values allowed by several governmental agencies. Thus, PLA is safe for use in fabricating articles for contact with food.


Assuntos
Poliésteres/química , Materiais Biocompatíveis , Biotecnologia , Difusão , Vidro , Temperatura Alta , Ácido Láctico/química , Modelos Químicos , Polímeros/química , Solubilidade , Espectrofotometria , Temperatura , Termodinâmica , Fatores de Tempo
7.
J Food Sci ; 75(2): M65-71, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20492243

RESUMO

Listeria monocytogenes and Salmonella typhimurium are major bacterial pathogens associated with poultry products. Ally isothiocyanate (AITC), a natural antimicrobial compound, is reportedly effective against these pathogenic organisms. A device was designed for the controlled release of AITC with modified atmosphere packaging (MAP), and then evaluated for its ability to control the growth of L. monocytogenes and S. typhimurium on raw chicken breast during refrigerated storage. In order to obtain controlled release during the test period, a glass vial was filled with AITC and triglyceride. It was then sealed using high-density polyethylene film. The release of AITC was controlled by the concentration (mole fraction) of AITC in the triglyceride and by the AITC vapor permeability through the film. The fresh chicken samples were inoculated with one or the other of the pathogens at 10(4) CFU/g, and the packages (with and without AITC-controlled release device) were flushed with ambient air or 30% CO(2)/70% N(2) before sealing, and then stored at 4 degrees C for up to 21 d. The maximum reduction in MAP plus AITC (compared to MAP alone) was 0.77 log CFU/g for L. monocytogenes and 1.3 log CFU/g for S. typhimurium. The color of the chicken breast meat was affected by the concentration of AITC. Overall, a release rate of 0.6 microg/h of AITC was found to not affect the color, whereas at 1.2 microg/h of AITC the surface of the chicken was discolored.


Assuntos
Embalagem de Alimentos/métodos , Isotiocianatos/farmacologia , Listeria monocytogenes/crescimento & desenvolvimento , Carne/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Dióxido de Carbono/metabolismo , Galinhas/microbiologia , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana/métodos , Nitrogênio/metabolismo , Pigmentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA