Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 478(7368): 221-4, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993757

RESUMO

During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress. Many foundational experiments have been performed, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention since the first demonstration of macroscopic quantum coherence in Josephson junction circuits. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen-vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10(7) such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.

2.
Phys Rev Lett ; 117(21): 210503, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27911564

RESUMO

The hybridization of distinct quantum systems is now seen as an effective way to engineer the properties of an entire system leading to applications in quantum metamaterials, quantum simulation, and quantum metrology. Recent improvements in both fabrication techniques and qubit design have allowed the community to consider coupling large ensembles of artificial atoms, such as superconducting qubits, to a resonator. Here, we demonstrate the coherent coupling between a microwave resonator and a macroscopic ensemble composed of several thousand superconducting flux qubits, where we observe a large dispersive frequency shift in the spectrum of 250 MHz. We achieve the large dispersive shift with a collective enhancement of the coupling strength between the resonator and qubits. These results represent the largest number of coupled superconducting qubits realized so far.

3.
Phys Rev Lett ; 114(12): 120501, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860725

RESUMO

In this Letter, we propose a counterintuitive use of a hybrid system where the coherence time of a quantum system can be significantly improved by coupling it with a system of a shorter coherence time. Coupling a two-level system with a single nitrogen-vacancy (NV^{-}) center, a dark state of the NV^{-} center naturally forms after the hybridization. We show that this dark state becomes robust against noise due to the coupling even when the coherence time of the two-level system is much shorter than that of the NV^{-} center. Our proposal opens a new way to use a quantum hybrid system for the realization of robust quantum information processing.

4.
Phys Rev Lett ; 111(10): 107008, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25166702

RESUMO

We have built a hybrid system composed of a superconducting flux qubit (the processor) and an ensemble of nitrogen-vacancy centers in diamond (the memory) that can be directly coupled to one another, and demonstrated how information can be transferred from the flux qubit to the memory, stored, and subsequently retrieved. We have established the coherence properties of the memory and succeeded in creating an entangled state between the processor and memory, demonstrating how the entangled state's coherence is preserved. Our results are a significant step towards using an electron spin ensemble as a quantum memory for superconducting qubits.

5.
Sci Rep ; 13(1): 11340, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443181

RESUMO

We report experimental and theoretical results on the extremely large Lamb shift in a multimode circuit quantum electrodynamics (QED) system in the deep-strong coupling (DSC) regime, where the qubit-resonator coupling strength is comparable to or larger than the qubit and resonator frequencies. The system comprises a superconducting flux qubit (FQ) and a quarter-wavelength coplanar waveguide resonator ([Formula: see text] CPWR) that are coupled inductively through a shared edge that contains a Josephson junction to achieve the DSC regime. Spectroscopy is performed around the frequency of the fundamental mode of the CPWR, and the spectrum is fitted by the single-mode quantum Rabi Hamiltonian to obtain the system parameters. Since the qubit is also coupled to a large number of higher modes in the resonator, the single-mode fitting does not provide the bare qubit energy but a value that incorporates the renormalization from all the other modes. We derive theoretical formulas for the Lamb shift in the multimode resonator system. As shown in previous studies, there is a cut-off frequency [Formula: see text] for the coupling between the FQ and the modes in the CPWR, where the coupling grows as [Formula: see text] for [Formula: see text] and decreases as [Formula: see text] for [Formula: see text]. Here [Formula: see text] is the frequency of the nth mode. The cut-off effect occurs because the qubit acts as an obstacle for the current in the resonator, which suppresses the current of the modes above [Formula: see text] at the location of the qubit and results in a reduced coupling strength. Using our observed spectrum and theoretical formulas, we estimate that the Lamb shift from the fundamental mode is 82.3% and the total Lamb shift from all the modes is 96.5%. This result illustrates that the coupling to the large number of modes in a CPWR yields an extremely large Lamb shift but does not suppress the qubit energy to zero, which would happen in the absence of a high-frequency cut-off.

6.
Sci Rep ; 10(1): 13687, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792626

RESUMO

In the field of superconducting electronics, a π phase shifter based on a ferromagnetic Josephson junction is expected to provide various advantages to classical and quantum superconducting devices. Here we report niobium nitride (NbN)-based ferromagnetic π junctions on a silicon (Si) substrate with a titanium nitride (TiN) buffer layer, which have applications to flux-bias-free flux quantum bits (qubits) and classical digital logic elements. We fabricated and characterized NbN/aluminum nitride (AlN)/NbN Josephson junctions, NbN/copper nickel (CuNi)/NbN ferromagnetic Josephson junctions, and superconducting quantum interference devices (SQUIDs) consisting of these junctions on the Si substrate. The fabricated NbN/AlN/NbN junctions showed a high junction quality suitable for qubit applications. Furthermore, the magnetic field dependence of the SQUID's critical current indicated that the NbN/CuNi/NbN junction worked as a π phase shifter on the Si substrate.

8.
Sci Rep ; 7(1): 12985, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021540

RESUMO

Nitrogen-Vacancy (NV) centers in diamond are promising solid-state quantum emitters that can be utilized for photonic quantum applications. Various diamond nanophotonic devices have been fabricated for efficient extraction of single photons emitted from NV centers to a single guided mode. However, for constructing scalable quantum networks, further efficient coupling of single photons to a guided mode of a single-mode fiber (SMF) is indispensable and a difficult challenge. Here, we propose a novel efficient hybrid system between an optical nanofiber and a cylindrical-structured diamond nanowire. The maximum coupling efficiency as high as 75% for the sum of both fiber ends is obtained by numerical simulations. The proposed hybrid system will provide a simple and efficient interface between solid-state quantum emitters and a SMF suitable for constructing scalable quantum networks.

9.
Nat Commun ; 5: 3424, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24709792

RESUMO

The hybridization of distinct quantum systems has opened new avenues to exploit the best properties of these individual systems. Superconducting circuits and electron spin ensembles are one such example. Strong coupling and the coherent transfer and storage of quantum information has been achieved with nitrogen vacancy centres in diamond. Recently, we have observed a remarkably sharp resonance (~1 MHz) at 2.878 GHz in the spectrum of flux qubit negatively charged nitrogen vacancy diamond hybrid quantum system under zero external magnetic field. This width is much narrower than that of both the flux qubit and spin ensemble. Here we show that this resonance is evidence of a collective dark state in the ensemble, which is coherently driven by the superposition of clockwise and counter-clockwise macroscopic persistent supercurrents flowing in the flux qubit. The collective dark state is a unique physical system and could provide a long-lived quantum memory.

10.
Phys Rev Lett ; 102(25): 257003, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19659113

RESUMO

We analyzed the Josephson bifurcation amplifier (JBA) readout process of a superconducting qubit quantum mechanically by calculating the dynamics of the density operator of a driven nonlinear oscillator and a qubit coupled system during the measurement process. In purely quantum cases, bifurcation is impossible. Introducing decoherence enables us to reproduce the bifurcation with a finite hysteresis. When a qubit is initially in a superposition state, we have observed the qubit-probe (JBA) entangled state, and it is divided into two separable states at the moment the JBA transition begins. This corresponds to "projection." To readout the measurement result, however, we must wait until the two JBA states are macroscopically well separated. The waiting time is determined by the strength of the decoherence in the JBA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA