RESUMO
Lymphocytic choriomeningitis virus (LCMV) is the prototypic arenavirus and a natural mouse pathogen. LCMV-Armstrong, an acutely resolved strain, and LCMV-clone 13, a mutant that establishes chronic infection, have provided contrasting infection models that continue to inform the fundamental biology of T cell differentiation, regulation of exhaustion, and response to checkpoint blockade. In this study, we report the isolation and characterization of LCMV-Minnesota (LCMV-MN), which was naturally transmitted to laboratory mice upon cohousing with pet shop mice and shares 80-95% amino acid homology with previously characterized LCMV strains. Infection of laboratory mice with purified LCMV-MN resulted in viral persistence that was intermediate between LCMV-Armstrong and -clone 13, with widely disseminated viral replication and viremia that was controlled within 15-30 d, unless CD4 T cells were depleted prior to infection. LCMV-MN-responding CD8+ T cells biased differentiation toward the recently described programmed death-1 (PD-1)+CXCR5+Tim-3lo stemlike CD8+ T cell population (also referred to as progenitor exhausted T cells) that effectuates responses to PD-1 blockade checkpoint inhibition, a therapy that rejuvenates responses against chronic infections and cancer. This subset resembled previously characterized PD-1+TCF1+ stemlike CD8+ T cells by transcriptional, phenotypic, and functional assays, yet was atypically abundant. LCMV-MN may provide a tool to better understand the breadth of immune responses in different settings of chronic Ag stimulation as well as the ontogeny of progenitor exhausted T cells and the regulation of responsiveness to PD-1 blockade.
Assuntos
Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Aminoácidos/metabolismo , Animais , Linfócitos T CD8-Positivos , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Viremia/metabolismoRESUMO
Zika virus (ZIKV) and dengue virus (DENV) are genetically and antigenically related flaviviruses that now co-circulate in much of the tropical and subtropical world. The rapid emergence of ZIKV in the Americas in 2015 and 2016, and its recent associations with Guillain-Barré syndrome, birth defects, and fetal loss have led to the hypothesis that DENV infection induces cross-reactive antibodies that influence the severity of secondary ZIKV infections. It has also been proposed that pre-existing ZIKV immunity could affect DENV pathogenesis. We examined outcomes of secondary ZIKV infections in three rhesus and fifteen cynomolgus macaques, as well as secondary DENV-2 infections in three additional rhesus macaques up to a year post-primary ZIKV infection. Although cross-binding antibodies were detected prior to secondary infection for all animals and cross-neutralizing antibodies were detected for some animals, previous DENV or ZIKV infection had no apparent effect on the clinical course of heterotypic secondary infections in these animals. All animals had asymptomatic infections and, when compared to controls, did not have significantly perturbed hematological parameters. Rhesus macaques infected with DENV-2 approximately one year after primary ZIKV infection had higher vRNA loads in plasma when compared with serum vRNA loads from ZIKV-naive animals infected with DENV-2, but a differential effect of sample type could not be ruled out. In cynomolgus macaques, the serotype of primary DENV infection did not affect the outcome of secondary ZIKV infection.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Coinfecção/virologia , Vírus da Dengue/imunologia , Dengue/virologia , Infecção por Zika virus/virologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Coinfecção/sangue , Coinfecção/complicações , Reações Cruzadas , Dengue/sangue , Dengue/complicações , Feminino , Macaca mulatta , Masculino , Infecção por Zika virus/sangue , Infecção por Zika virus/complicaçõesRESUMO
Defining the complex dynamics of Zika virus (ZIKV) infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a "synthetic swarm" whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics.
Assuntos
Evolução Biológica , Biblioteca Gênica , Transmissão Vertical de Doenças Infecciosas , Macaca mulatta/genética , Mosquitos Vetores , Infecção por Zika virus/complicações , Zika virus/classificação , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Macaca mulatta/virologia , Masculino , Viremia , Zika virus/genética , Zika virus/patogenicidade , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologiaRESUMO
Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.
Assuntos
Genes MHC Classe I/genética , Macaca nemestrina/genética , Macaca nemestrina/imunologia , Alelos , Sequência de Aminoácidos , Animais , Clonagem Molecular/métodos , HIV , Haplótipos/imunologia , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Complexo Principal de Histocompatibilidade/imunologia , Vírus da Imunodeficiência SímiaRESUMO
Lamellar nanosheets of contrasting materials are ubiquitous in functional coatings and electronic devices. They also represent a unique paradigm for polymer nanocomposites. Here, we use fluid-assembled lamellar nanosheets - alternating layers of polymer and single-wall carbon nanotubes (SWCNTs) - to gain insight into the flexural mechanics of such hybrid films. Specifically, we measure the modulus and yield strain as a function of both layer thickness and the total number of layers. Overall, we find that the multi-layered films exhibit the greatest synergistic effects near a layer thickness of 20 nm or less, which we relate to the characteristic width of the SWCNT-polymer interface. For all layer thicknesses, we find that the nanosheets have realized the bulk limit by six layers. Our results have potentially profound implications for controlling the rigidity and durability of polymer nanocomposites, thin hybrid films and flexible heterojunctions.
RESUMO
We combine experiments and distinct element method simulations to understand the stability of rings and rackets formed by single-walled carbon nanotubes assembled into ropes. Bending remains a soft deformation mode in ropes because intra-rope sliding of the constituent nanotubes occurs with ease. Our simulations indicate that the formation of these aggregates can be attributed to the mesoscopic mechanics of entangled nanotubes and to the sliding at the contacts. Starting from the single-walled carbon nanotubes, the sizes of the rings and rackets' heads increase with the rope diameter, indicating that the stability of the experimental aggregates can be largely explained by the competition between bending and van der Waals adhesion energies. Our results and simulation method should be useful for understanding nanoscale fibers in general.
RESUMO
The influence of a polymer capping layer on the deformation of purified single-wall carbon nanotube (SWCNT) networks is analyzed through the wrinkling of compressed SWCNT-polymer bilayers on polydimethylsiloxane. The films exhibit both wrinkling and folding under compression and we extract the elastoplastic response using conventional two-plate buckling schemes. The formation of a diffuse interpenetrating nanotube-polymer interface has a dramatic effect on the nanotube layer modulus for both metallic and semiconducting species. In contrast to the usual percolation exhibited by the pure SWCNT films, the capped films show a crossover from "composite" behavior (the modulus of the SWCNT film is enhanced by the polymer) to "plasticized" behavior (the modulus of the SWCNT film is reduced by the polymer) as the SWCNT film thickness increases. For almost all thicknesses, however, the polymer enhances the yield strain of the nanotube network. Conductivity measurements on identical films suggest that the polymer has a modest effect on charge transport, which we interpret as a strain-induced polymer penetration of interfacial nanotube contacts. We use scaling, Flory-Huggins theory, and independently determined nanotube-nanotube and nanotube-polymer Hamaker constants to model the response.
RESUMO
There are currently no approved drugs to treat Zika virus (ZIKV) infection during pregnancy. Hyperimmune globulin products such as VARIZIG and WinRho are FDA-approved to treat conditions during pregnancy such as Varicella Zoster virus infection and Rh-incompatibility. We administered ZIKV-specific human immune globulin as a treatment in pregnant rhesus macaques one day after subcutaneous ZIKV infection. All animals controlled ZIKV viremia following the treatment and generated robust levels of anti-Zika virus antibodies in their blood. No adverse fetal or infant outcomes were identified in the treated animals, yet the placebo control treated animals also did not have signs related to congenital Zika syndrome (CZS). Human immune globulin may be a viable prophylaxis and treatment option for ZIKV infection during pregnancy, however, more studies are required to fully assess the impact of this treatment to prevent CZS.
Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Animais , Feminino , Humanos , Imunoglobulinas , Lactente , Macaca mulatta , Gravidez , ViremiaRESUMO
Congenital Zika virus (ZIKV) exposure results in a spectrum of disease ranging from severe birth defects to delayed onset neurodevelopmental deficits. ZIKV-related neuropathogenesis, predictors of birth defects, and neurodevelopmental deficits are not well defined in people. Here we assess the methodological and statistical feasibility of a congenital ZIKV exposure macaque model for identifying infant neurobehavior and brain abnormalities that may underlie neurodevelopmental deficits. We inoculated five pregnant macaques with ZIKV and mock-inoculated one macaque in the first trimester. Following birth, growth, ocular structure/function, brain structure, hearing, histopathology, and neurobehavior were quantitatively assessed during the first week of life. We identified the typical pregnancy outcomes of congenital ZIKV infection, with fetal demise and placental abnormalities. We estimated sample sizes needed to define differences between groups and demonstrated that future studies quantifying brain region volumes, retinal structure, hearing, and visual pathway function require a sample size of 14 animals per group (14 ZIKV, 14 control) to detect statistically significant differences in at least half of the infant exam parameters. Establishing the parameters for future studies of neurodevelopmental outcomes following congenital ZIKV exposure in macaques is essential for robust and rigorous experimental design.
Assuntos
Transtornos da Audição/patologia , Malformações do Sistema Nervoso/patologia , Complicações Infecciosas na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Transtornos da Visão/patologia , Infecção por Zika virus/complicações , Zika virus/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Transtornos da Audição/etiologia , Macaca mulatta , Malformações do Sistema Nervoso/etiologia , Gravidez , Complicações Infecciosas na Gravidez/etiologia , Resultado da Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Transtornos da Visão/etiologia , Infecção por Zika virus/virologiaRESUMO
Congenital Zika virus (ZIKV) infection was first linked to birth defects during the American outbreak in 2015/2016. It has been proposed that mutations unique to the Asian/American-genotype explain, at least in part, the ability of Asian/American ZIKV to cause congenital Zika syndrome (CZS). Recent studies identified mutations in ZIKV infecting humans that arose coincident with the outbreak in French Polynesia and were stably maintained during subsequent spread to the Americas. Here we show that African ZIKV can infect and harm fetuses and that the S139N substitution that has been associated with the American outbreak is not essential for fetal harm. Our findings, in a vertical transmission mouse model, suggest that ZIKV will remain a threat to pregnant women for the foreseeable future, including in Africa, Southeast Asia, and the Americas. Additional research is needed to better understand the risks associated with ZIKV infection during pregnancy, both in areas where the virus is newly endemic and where it has been circulating for decades.
Assuntos
Feto/virologia , Transmissão Vertical de Doenças Infecciosas/veterinária , Infecção por Zika virus/veterinária , Zika virus/genética , África , Animais , Sudeste Asiático , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Taxa de Sobrevida , Replicação Viral , Zika virus/isolamento & purificação , Infecção por Zika virus/virologiaRESUMO
Mouse and nonhuman primate models now serve as useful platforms to study Zika virus (ZIKV) pathogenesis, candidate therapies, and vaccines, but they rely on needle inoculation of virus: the effects of mosquito-borne infection on disease outcome have not been explored in these models. Here we show that infection via mosquito bite delays ZIKV replication to peak viral loads in rhesus macaques. Importantly, in mosquito-infected animals ZIKV tissue distribution was limited to hemolymphatic tissues, female reproductive tract tissues, kidney, and liver, potentially emulating key features of human ZIKV infections, most of which are characterized by mild or asymptomatic disease. Furthermore, deep sequencing analysis reveals that ZIKV populations in mosquito-infected monkeys show greater sequence heterogeneity and lower overall diversity than in needle-inoculated animals. This newly developed system will be valuable for studying ZIKV disease because it more closely mimics human infection by mosquito bite than needle-based inoculations.
Assuntos
Aedes/virologia , Tropismo Viral/fisiologia , Replicação Viral , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Chlorocebus aethiops , Feminino , Humanos , Cinética , Macaca mulatta , Masculino , Mosquitos Vetores/virologia , Doenças dos Primatas/virologia , Células Vero , Carga ViralRESUMO
Single-wall carbon nanotube (SWCNT) films are ideal components for thin, flexible, and durable electronic devices. Here, we use a variety of processing approaches to fabricate SWCNT-silicon heterojunctions from both unsorted and chirality-enriched SWCNTs. Through measured structure/processing/property relationships, we quantify the influence of SWCNT purity, alignment and residual doping on device performance and diode characteristics. Our results show that mixed-type unaligned SWCNTs processed in super-acid solvents can achieve state-of-the-art performance. The devices perform comparably to those fabricated from type or chiral-purified SWCNTs, despite what appear to be significant deviations from ideal diode behavior. Our results clarify a direct route for processing nanotube-silicon heterojunctions while providing additional insight into the underlying nature of these devices.
RESUMO
Wrinkling and folding are examined experimentally for three distinct types of disordered films on polydimethylsiloxane (PDMS) substrates; diblock copolymers, glassy polymers, and single-wall carbon nanotubes. All three of these systems exhibit localization and length-scale doubling at small strains, and we qualitatively account for these observations with a simple physical argument related to the width of the stress correlation function and the interaction of localization sites. Our results have relevance to wrinkling and folding in a diverse array of disordered films on soft substrates, and the insights offered here should help guide the development of theoretical models for the influence of structural disorder on thin-film wrinkling instabilities.