Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt B): 113309, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487260

RESUMO

The present study is focused on synthesis of silver nanoparticles from weeds and an assessment of their mosquito larvicidal efficacy. This study also presented the toxicological effects as well as the stability of these nanoparticles in aquatic mesocosms. The weed Digiteria sanguinallis was first time used for the synthesis of silver nanoparticles. The synthesized nanoparticles were characterized by various analytical techniques, such as UV-VIS, TEM, FESEM, EDX, XRD, FTIR, and zeta potential study. The result revealed that the nanoparticles are crystalline, spherical shape with band gap 2.44 eV, and average size 18 nm. The LC50 value of synthesized AgNPs were recorded as 7.47 and 6.31 mg/L at 24 h against Cx. quinquefasciatus and A. albopictus respectively. In contrast, larvicidal activity of weed extract was insignificant against two target species. In aquatic mesocosm study, AgNPs (LC50 dose) does not alter the nature of water parameters within experimental period. However only EC % and ORP were changes because of silver ion oxidation. In biochemical parameters, only stress enzymes for animal and plant species were moderately altered under long term exposure. But glycogen, protein, and AchE of two mosquito species were significantly changed under same mesocosm setup within short exposure. Comparatively, in control mesocosm, synthesized AgNPs are naturally change their nano form within 20 days with the presence of all non-target species and pond sediment. Therefore, it can be concluded that biosynthesized AgNPs could be used as a larvicidal agent in near future with negligible effects on aquatic organisms.


Assuntos
Aedes , Anopheles , Culex , Dengue , Inseticidas , Nanopartículas Metálicas , Animais , Inseticidas/análise , Larva , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Mosquitos Vetores , Extratos Vegetais/toxicidade , Folhas de Planta , Medição de Risco , Prata/química , Prata/toxicidade
2.
Environ Sci Pollut Res Int ; 30(6): 16525-16538, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36190628

RESUMO

The fast-growing urbanization and slow progress in the field of waste management have led to the accumulation of large quantities of animal wastes. The present work focused on the synthesis of low-cost and eco-friendly chicken bile juice-mediated silver nanoparticles (BJ-AgNP). Results reveal that bile juices have enough potentiality towards the synthesis of almost uniform sizes (average size < 50 nm) of BJ-AgNPs which remains stable for more than 6 months. Response surface methodology (RSM) successfully demonstrated the optimised condition of BJ-AgNP synthesis. Factors like concentration of salt and bile extract and temperature are significantly responsible for nanoparticle synthesis. The synthesis of nanoparticle was further characterized using UV-Vis, TEM, FESEM, XRD, FTIR, TGA, and EDS. The synthesised nanoparticle showed excellent bactericidal activity against both Gram positive and Gram negative bacteria with MIC and MBC of 40 and 50 µg/mL for Bacillus subtilis (MTCC-441) and 60 and 60 µg/mL for Eschecheria coli (MTCC-1687) respectively. The synthesised nanoparticle also exhibited as an antibiofilm activity against B. subtilis, with ~89% biofilm inhibition efficacy at 4 X MIC, having optimal bacterial concentration of 106 CFU/mL. Therefore, the present findings clearly demonstrated that an absolute animal waste could be a valuable ingredient in the field of therapeutic nanoscience.


Assuntos
Nanopartículas Metálicas , Animais , Prata/farmacologia , Galinhas , Antibacterianos/farmacologia , Bile , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Biofilmes , Extratos Vegetais
3.
J Contam Hydrol ; 256: 104195, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186993

RESUMO

Deterioration of groundwater quality is a long-term incident which leads unending vulnerability of groundwater. The present work was carried out in Murshidabad District, West Bengal, India to assess groundwater vulnerability due to elevated arsenic (As) and other heavy metal contamination in this area. The geographic distribution of arsenic and other heavy metals including physicochemical parameters of groundwater (in both pre-monsoon and post-monsoon season) and different physical factors were performed. GIS-machine learning model such as support vector machine (SVM), random forest (RF) and support vector regression (SVR) were used for this study. Results revealed that, the concentration of groundwater arsenic compasses from 0.093 to 0.448 mg/L in pre-monsoon and 0.078 to 0.539 mg/L in post-monsoon throughout the district; which indicate that all water samples of the Murshidabad District exceed the WHO's permissible limit (0.01 mg/L). The GIS-machine learning model outcomes states the values of area under the curve (AUC) of SVR, RF and SVM are 0.923, 0.901 and 0.897 (training datasets) and 0.910, 0.899 and 0.891 (validation datasets), respectively. Hence, "support vector regression" model is best fitted to predict the arsenic vulnerable zones of Murshidabad District. Then again, groundwater flow paths and arsenic transport was assessed by three dimensions underlying transport model (MODPATH). The particles discharging trends clearly revealed that the Holocene age aquifers are major contributor of As than Pleistocene age aquifers and this may be the main cause of As vulnerability of both northeast and southwest parts of Murshidabad District. Therefore, special attention should be paid on the predicted vulnerable areas for the safeguard of the public health. Moreover, this study can help to make a proper framework towards sustainable groundwater management.


Assuntos
Arsênio , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Metais Pesados/análise , Índia
4.
Environ Toxicol Pharmacol ; 94: 103908, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35709962

RESUMO

Accumulation of plastic materials in terrestrial systems threatens to contaminate food chains. The aim of the current study is to determine the impact of microplastics synthesized from PET plastics (control, 50, 250, 500, 750, 1000 mg/L) with respect to morphological, biochemical impact on Cicer arietinum using standardized 72 h assay and cytotoxicity study on Allium cepa root tips. The synthesized microplastics were characterized by Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectroscopy (FTIR) studies. Germination studies clearly revealed that there is a sharp decrease in germination with increasing the concentration of microplastics. Both pigment and carbohydrate levels increased up to 500 mg/L concentration, although protein levels increased with increase of microplastic dose. Catalase activity also increased with increasing microplastic concentration. Finally, cytotoxicity studies revealed significant chromosomal aberration at higher dose of microplastics. Therefore, it may be concluded that the microplastics have significant biological and structural adverse effects on plant metabolism.


Assuntos
Cicer , Poluentes Químicos da Água , Cicer/metabolismo , Monitoramento Ambiental , Microplásticos/toxicidade , Cebolas/metabolismo , Plásticos/toxicidade , Polietilenotereftalatos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Sci Total Environ ; 713: 136592, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31955093

RESUMO

The present effort aims to investigate the cytotoxic and genotoxic impact of three widely used nanoparticles (ZnO, TiO2 and Al2O3) on root cells of Allium cepa as a test organism. The root tip of Allium cepa were treated with three different concentrations (0.1 10 and 100 mg/L) of the above-mentioned NPs and the observations were recorded after proper growth of root under both nanoparticle solutions and UV-B exposure in combined conditions and separately. The parameters such as mitotic index, various forms of chromosomal aberrations, various reactive oxygen species (ROS) generation such as superoxide radical (O-2·), hydrogen peroxide, hydroxyl radical (·OH), lipid peroxidation and bio-uptake of nanoparticles were assessed. The results revealed that for all the three nanoparticles, mitotic index (MI) was highly reduced in comparison to control. Among the three nanoparticles, the MI value of TiO2 was 59.5% at 0.1 mg/L. Chromosomal aberration data suggest that nano Al2O3 exhibited disturbed metaphase at 0.1 mg/L, and abnormal anaphase and sticky metaphase at 10 and 100 mg/L, respectively. Similarly, lagged metaphase and anaphase with multiple chromatin bridges were recorded for both nano ZnO and nano TiO2 at 0.1 mg/L. But, nonsignificant (p > 0.05) results were recorded between only nano metal oxide and UV-B along with nano metal oxide. ROS generation data revealed that ZnO is more active under UV-B than TiO2 and Al2O3. The cellular deformation and the existence of metal in A. cepa under nano ZnO, TiO2 and Al2O3 treatment were evaluated by Scanning Electron Micrograph (SEM) and X-ray fluorescence (XRF) study, respectively. It may safely be concluded that with respect to chromosomal aberration and mitotic index, out of the three nanoparticles, Al2O3 is the most severe at higher concentrations and nano ZnO shows lowest mitotic index under UV-B exposure.


Assuntos
Cebolas , Óxido de Alumínio , Dano ao DNA , Meristema , Raízes de Plantas , Titânio , Óxido de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA