Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902128

RESUMO

Two closely related Proteus mirabilis smooth strains, Kr1 and Ks20, were isolated from wound and skin samples, respectively, of two infected patients in central Poland. Serological tests, using the rabbit Kr1-specific antiserum, revealed that both strains presented the same O serotype. Their O antigens are unique among the Proteus O serotypes, which had been described earlier, as they were not recognized in an enzyme-linked immunosorbent assay (ELISA) by a set of Proteus O1-O83 antisera. Additionally, the Kr1 antiserum did not react with O1-O83 lipopolysaccharides (LPSs). The O-specific polysaccharide (OPS, O antigen) of P. mirabilis Kr1 was obtained via the mild acid degradation of the LPSs, and its structure was established via a chemical analysis and one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy applied to both initial and O-deacetylated polysaccharides, where most ß-2-acetamido-2-deoxyglucose (N-acetylglucosamine) (GlcNAc) residues are non-stoichiometrically O-acetylated at positions 3, 4, and 6 or 3 and 6, and a minority of α-GlcNAc residues are 6-O-acetylated. Based on the serological features and chemical data, P. mirabilis Kr1 and Ks20 were proposed as candidates to a new successive O-serogroup in the genus Proteus, O84, which is another example of new Proteus O serotypes identified lately among serologically differentiated Proteus bacilli infecting patients in central Poland.


Assuntos
Antígenos O , Proteus mirabilis , Animais , Coelhos , Antígenos O/química , Sorogrupo , Sequência de Carboidratos , Proteus , Lipopolissacarídeos , Sorotipagem
2.
Glycobiology ; 27(7): 669-676, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28402541

RESUMO

The O-antigen is a part of the outer membrane of Gram-negative bacteria and is related to bacterial virulence. It is one of the most variable cell constituents, and its structural diversity is almost entirely due to genetic variation of the O-antigen gene cluster. In this study, the O-antigen structure of Escherichia coli O62 was elucidated by chemical analysis and nuclear magnetic resonance spectroscopy, but showing not consistent with the O-antigen gene cluster between conserved genes galF and gnd reported earlier. The complete genome of E. coli O62 was then sequenced and analyzed, and another O-antigen gene cluster was found and characterized that correlated perfectly with the established O-antigen structure. A deletion and complementation experiment confirmed the functionality of the novel gene cluster and demonstrated that the O62-antigen is synthesized by the ABC transporter-dependent system. To our knowledge, this is the first report that the O-antigen gene cluster is positioned at a novel locus in E. coli. Comparative analysis indicated that E. coli O62 likely originated from E. coli O68 via an IS event resulting in the repression of the O68-antigen synthesis, followed by the acquisition of a novel O-antigen gene cluster from Enterobacter aerogenes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Escherichia coli/genética , Antígenos O/genética , Cromossomos Bacterianos/genética , Escherichia coli/metabolismo , Família Multigênica , Antígenos O/metabolismo
3.
Glycoconj J ; 34(1): 71-84, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27645300

RESUMO

Based on the O-specific polysaccharides of the lipopolysaccharides (O-polysaccharides, O-antigens), strains of a clonal species Escherichia coli are classified into 184 O serogroups. In this work, structures of the O-polysaccharides of E. coli O69 and O146 were elucidated and gene clusters for their biosynthesis were characterized. The O-polysaccharides were released from the lipopolysaccharides by mild acid hydrolysis and studied by sugar analysis and one- and two-dimensional 1H and 13C NMR spectroscopy before and after O-deacetylation. The O146 polysaccharide was also studied by Smith degradation. The O69 and O146 polysaccharides were found to contain ether conjugates of monosaccharides with lactic acid called glycolactilic acids: 2-acetamido-2-deoxy-4-O-[(R)-1-carboxyethyl]-D-glucose (D-GlcNAc4Rlac) and 3-O-[(S)-1-carboxyethyl]-D-glucose (D-Glc3Slac), respectively. Structures of the pentasaccharide repeats of the O-polysaccharides were established, and that of E. coli O69 was found to differ in the presence of D-GlcNAc4Rlac from the structure reported for this bacterium earlier (Erbing C, Kenne L, Lindberg B. 1977. Carbohydr Res. 56:371-376). The O-antigen gene clusters of E. coli O69 and O146 between conserved genes galF and gnd were analyzed taking into account the O-polysaccharide structures established, and functions of putative genes for synthesis of D-Glc3Slac and D-GlcNAc4Rlac and for glycosyltransferases were assigned based on homology with O-antigen biosynthesis genes of other enteric bacteria. It was found that in E. coli and Shigella spp. predicted enolpyruvate reductases of the biosynthesis pathway of glycolactilic acids, LarR and LarS, which catalyze formation of conjugates with (R)- or (S)-lactic acid, respectively, are distinguished by sequence homology and size.


Assuntos
Acetilglucosamina/análogos & derivados , Escherichia coli/química , Ácido Láctico/análogos & derivados , Lipopolissacarídeos/química , Acetilglucosamina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/análogos & derivados , Glucose/metabolismo , Glucosiltransferases/genética , Ácido Láctico/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética
4.
Glycobiology ; 26(4): 335-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26582605

RESUMO

Upon mild acid degradation of the lipopolysaccharide of Escherichia coli O165, the O-polysaccharide chain was cleaved at the glycosidic linkage of 5-N-acetyl-7-N-[(R)-3-hydroxybutanoyl]pseudaminic acid (Pse5Hb7Ac). Analysis of the resulting linear tetrasaccharide and alkali-treated lipopolysaccharide by (1)H/(13)C 1D and 2D nuclear magnetic resonance spectroscopy enabled elucidation of the following structure of the O-polysaccharide: →8)-α-Psep5Hb7Ac-(2 → 6)-ß-d-Galp-(1 → 4)-ß-d-Glсp-(1 → 3)-α-d-GlсpNAc-(1→. The ß-d-Galp-(1 → 4)-ß-d-Glсp-(1 → 3)-d-GlсpNAc structural element is also present in the O-polysaccharide of E. coli O82. The content of the O-antigen gene cluster of E. coli O165 was found to be consistent with the O-polysaccharide structure established. Functions of proteins encoded in the gene cluster, including enzymes involved in the Pse5Hb7Ac biosynthesis and glycosyltransferases, were putatively assigned by comparison with sequences in available databases.


Assuntos
Glicosiltransferases/genética , Antígenos O/química , Ácidos Siálicos/química , Açúcares Ácidos/química , Sequência de Carboidratos/genética , Escherichia coli/genética , Glicosiltransferases/química , Lipopolissacarídeos , Espectroscopia de Ressonância Magnética , Família Multigênica , Antígenos O/genética , Ácidos Siálicos/genética
5.
Glycobiology ; 26(5): 501-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26711304

RESUMO

Capsular polysaccharides (CPSs), from Acinetobacter baumannii isolates 1432, 4190 and NIPH 70, which have related gene content at the K locus, were examined, and the chemical structures established using 2D(1)H and(13)C NMR spectroscopy. The three isolates produce the same pentasaccharide repeat unit, which consists of 5-N-acetyl-7-N-[(S)-3-hydroxybutanoyl] (major) or 5,7-di-N-acetyl (minor) derivatives of 5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic (legionaminic) acid (Leg5Ac7R), D-galactose, N-acetyl-D-galactosamine and N-acetyl-D-glucosamine. However, the linkage between repeat units in NIPH 70 was different to that in 1432 and 4190, and this significantly alters the CPS structure. The KL27 gene cluster in 4190 and KL44 gene cluster in NIPH 70 are organized identically and contain lga genes for Leg5Ac7R synthesis, genes for the synthesis of the common sugars, as well as anitrA2 initiating transferase and four glycosyltransferases genes. They share high-level nucleotide sequence identity for corresponding genes, but differ in the wzy gene encoding the Wzy polymerase. The Wzy proteins, which have different lengths and share no similarity, would form the unrelated linkages in the K27 and K44 structures. The linkages formed by the four shared glycosyltransferases were predicted by comparison with gene clusters that synthesize related structures. These findings unambiguously identify the linkages formed by WzyK27 and WzyK44, and show that the presence of different wzy genes in otherwise closely related K gene clusters changes the structure of the CPS. This may affect its capacity as a protective barrier for A. baumannii.


Assuntos
Acinetobacter baumannii/metabolismo , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Família Multigênica , Polissacarídeos Bacterianos/metabolismo , Acinetobacter baumannii/genética , Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Polissacarídeos Bacterianos/genética
6.
J Bacteriol ; 196(8): 1525-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24509314

RESUMO

O antigen (O polysaccharide) is an important and highly variable cell component present on the surface of cells which defines the serospecificity of Gram-negative bacteria. Most O antigens of Shigella flexneri, a cause of shigellosis, share a backbone composed of →2)-α-l-Rhap(III)-(1→2)-α-l-Rhap(II)-(1→3)-α-l-Rhap(I)-(1→3)-ß-d-GlcpNAc-(1→ repeats, which can be modified by adding various substituents, giving rise to 19 serotypes. The known modifications include glucosylation on various sugar residues, O-acetylation on Rha(I), and phosphorylation with phosphoethanolamine on Rha(II) or/and Rha(III). Recently, two new O-antigen modifications, namely, O-acetylation at position 3 or 4 of Rha(III) and position 6 of GlcNAc, have been identified in several S. flexneri serotypes. In this work, the genetic basis for the 3/4-O-acetylation on Rha(III) was elucidated. Bioinformatic analysis of the genome of S. flexneri serotype 2a strain Sf301, which carries 3/4-O-acetylation on Rha(III), revealed an O-acyltransferase gene designated oacB. Genetic studies combined with O-antigen structure analysis demonstrated that this gene is responsible for the 3/4-O-acetylation in serotypes 1a, 1b, 2a, 5a, and Y but not serotype 6, which has a different O-antigen backbone structure. The oacB gene is carried by a transposon-like structure located in the proA-adrA region on the chromosome, which represents a novel mechanism of mobilization of O-antigen modification factors in S. flexneri. These findings enhance our knowledge of S. flexneri O-antigen modifications and shed light on the origin of new O-antigen variants.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Antígenos O/metabolismo , Ramnose/metabolismo , Shigella flexneri/enzimologia , Shigella flexneri/genética , Acetilação , Sequência de Carboidratos , Biologia Computacional , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Genes Bacterianos , Dados de Sequência Molecular , Antígenos O/química , Sorotipagem
7.
Glycobiology ; 24(3): 305-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24379081

RESUMO

The O-antigens of all Shigella flexneri serotypes, except serotype 6, share a linear tetrasaccharide repeat composed of one N-acetylglucosamine and three l-rhamnose residues, and differences between the serotypes are due to modification of various monosaccharide residues with glucosyl and/or O-acetyl and/or phosphoethanolamine (PEtN) groups. Plasmid-borne opt (formerly lpt-O) gene encoding a PEtN transferase which modifies the O-antigens of S. flexneri serotype X, 4a and Y strains and converts the hosts into MASF IV-1 (E1037) positive "variant" (v) Xv, 4av and Yv serotypes, respectively. In this study, we showed that the opt-carrying plasmid pSFxv_2 can transform strains of all S. flexneri serotypes (1-6) to confer them with the MASF IV-1 epitope recognized by monoclonal antibody MASF IV-1 and typing antiserum IV. The transformants possessed modified O-antigens with a PEtN group(s) at position 3 of one or two rhamnose residues. In some serotypes, the PEtN modification competed or/and interfered with glucosylation and O-acetylation at the same or its neighboring sugar residue. We also showed that the plasmid pSFxv_2 is mobilizable to other S. flexneri strains by conjugation. Although pSFxv_2-harboring S. flexneri strains found in clinical infections are restricted to serotypes Xv, 4av, Yv and, possibly, 6v, our results demonstrate a high potential of dissemination of this plasmid in S. flexneri and emergence of new S. flexneri serotypes.


Assuntos
Glicosiltransferases/metabolismo , Antígenos O/metabolismo , Plasmídeos/genética , Processamento de Proteína Pós-Traducional , Shigella flexneri/metabolismo , Sequência de Carboidratos , Etanolaminas/metabolismo , Glicosilação , Glicosiltransferases/genética , Antígenos O/química , Antígenos O/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sorotipagem , Shigella flexneri/classificação , Shigella flexneri/genética
8.
J Clin Microbiol ; 52(6): 2033-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671799

RESUMO

Shigella flexneri is the major cause of shigellosis in developing countries. All serotypes except for serotype 6 share an O-antigen backbone composed of a → 2)-α-L-Rhap(III)-(1 → 2)-α-l-Rhap(II)-(1 → 3)-α-l-Rhap(I)-(1 → 3)-ß-D-GlcpNAc-(1 → tetrasaccharide repeat. It can be modified by the addition of a glucosyl group to one or more sugar residues and/or an O-acetyl group to Rha(I) and/or a phosphoethanolamine to Rha(II) and/or Rha(III). These modifications give rise to type I-, IC-, II-, IV-, and V- and to group 6-, 7,8-, and MASF IV-1-specific antigenic determinants, which comprise the current serotyping scheme of S. flexneri. Recently, another O-antigen modification created by adding an O-acetyl group to Rha(III) at position 3 or 4 (3/4-O-acetylation) has been found in S. flexneri serotypes 1a, 1b, 2a, 5a, Y, and 6. A new O-acyltransferase gene named oacB has been shown to mediate the 3/4-O-acetylation in serotypes 1a, 1b, 2a, 5a, and Y but not in 6. In this work, we studied the distribution of the 3/4-O-acetylation in S. flexneri and the antigenicity that resulted from this modification. PCR screening of the oacB gene in clinical isolates of S. flexneri demonstrated that the oacB-mediated 3/4-O-acetylation is widespread in serotypes 1a, 1b, 2a, 5a, and Y. Serological analysis indicated that this modification confers the host with a novel antigenic determinant that is provisionally named group O factor 9. These findings enhance our understanding of the varieties of O-antigenic determinants related to O-antigen modification in S. flexneri and will assist epidemiological studies and vaccine development.


Assuntos
Epitopos/análise , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Antígenos O/análise , Shigella flexneri/química , Shigella flexneri/imunologia , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Epitopos/imunologia , Humanos , Antígenos O/imunologia , Reação em Cadeia da Polimerase , Prevalência , Ramnose/metabolismo , Shigella flexneri/classificação , Shigella flexneri/isolamento & purificação
9.
Carbohydr Res ; 540: 109145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759341

RESUMO

The cell wall of endophytic strain Rathayibacter oskolensis VKM Ac-2121T (family Microbacteriaceae, class Actinomycetes) was found to contain neutral and acidic glycopolymers. The neutral polymer is a block-type rhamnomannan partially should be substitutied by xylose residues, [→2)-α-[ß-D-Xylp-(1 â†’ 3)]-D-Manp-(1 â†’ 3)-α-D-Rhap-(1→]∼30 [→2)-α-D-Manp-(1 â†’ 3)-α-D-Rhap-(1→]∼45. The acidic polymer has branched chain, bearing lactate and pyruvate residues, →4)-α-D-[S-Lac-(2-3)-α-L-Rhap-(1 â†’ 3)]-D-Manp-(1 â†’ 3)-α-D-[4,6-R-Pyr]-D-Galp-(1 â†’ 3)-ß-D-Glcp-(1 â†’. The structures of both glycopolymers were not described in the Gram-positive bacteria to date. The glycopolymers were studied by chemical and NMR spectroscopic methods. The results of this study provide new data on diversity of bacterial glycopolymers and may prove useful in the taxonomy of the genus Rathayibacter and for understanding the molecular mechanisms of interaction between plants and plant endophytes.


Assuntos
Parede Celular , Xilose , Parede Celular/química , Parede Celular/metabolismo , Xilose/química , Xilose/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Mananas/química , Sequência de Carboidratos , Actinobacteria/química , Actinobacteria/metabolismo , Ramnose/química , Polissacarídeos Bacterianos/química , Polissacarídeos/química , Actinomycetales/química , Actinomycetales/metabolismo
10.
Glycobiology ; 23(4): 475-85, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23283000

RESUMO

Shigella flexneri is the major human pathogen causing shigellosis. O-antigens of all S. flexneri serotypes (except for serotype 6) share the →2)-α-l-Rhap(III)-(1 → 2)-α-l-Rhap(II)-(1 → 3)-α-l-Rhap(I)-(1 → 3)-ß-d-GlcpNAc-(1→ basic O-unit, whereas differences between the serotypes are conferred by phage-encoded glucosylation and/or O-acetylation at various positions. Recently, in serotype X and 4a variants called Xv and 4av, respectively, O-antigen modification with phosphoethanolamine (PEtN) has been identified, which is encoded by a plasmid-borne gene (lpt-O) for a PEtN-transferase and confers the monoclonal antibody IV-1(MASF IV-1) determinant to the bacteria. In this study, we elucidated the O-antigen structure of serotype Yv, another MASF IV-1-positive novel variant of S. flexneri. The serotype Yv O-antigen has the same basic carbohydrate backbone structure as that of the "classical" serotype Y, but differs in the presence of PEtN at position 3 of Rha(III) (major) or both Rha(II) and Rha(III) (minor). This pattern is similar to that of serotype 4av, but different from the pattern of serotype Xv, which is characterized by major PEtN modification on Rha(II). In serotype Yv, mono- and bisphosphorylated O-units generate a block-copolymeric structure, the former being partially O-acetylated at position 6 of GlcNAc and the latter lacking O-acetylation. Functional analysis revealed a correlation between the serotype-specific PEtN modification pattern and the lpt-O variation in different serotypes: lpt-O(RII) in serotype Xv is better tuned for phosphorylation of Rha(II) and lpt-O(RIII) in serotypes Yv and 4av for phosphorylation of Rha(III). These data enhance our knowledge of S. flexneri serotype conversion mechanisms and help to understand the biosynthesis process of the new O-antigen variants.


Assuntos
Etanolaminofosfotransferase/genética , Etanolaminas/química , Antígenos O/química , Shigella flexneri/química , Sequência de Carboidratos , Etanolaminofosfotransferase/metabolismo , Etanolaminas/metabolismo , Variação Genética , Glicosilação , Antígenos O/metabolismo , Sorotipagem
11.
Carbohydr Res ; 523: 108726, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36446189

RESUMO

A structurally diverse capsular polysaccharide (CPS) in the outer cell envelope plays an important role in the virulence of the important bacterial pathogen, Acinetobacter baumannii. More than 75 different CPS structures have been determined for the species to date, and many CPSs include isomers of a higher sugar, namely 5,7-diamino-3,5,7,9-tetradeoxynon-2-ulosonic acid. Recently, a novel isomer having the d-glycero-l-manno configuration (5,7-di-N-acetyl-8-epipseudaminic acid; 8ePse5Ac7Ac) has been identified in the CPS from A. baumannii clinical isolate RES-546 [Carbohydr. Res. 513 (2022) 108,531]. Here, the complete chemical structure of this CPS, designated K135, was elucidated. The CPS was found to have a branched tetrasaccharide K unit and to include the higher sugar as part of a 8ePse5Ac7Ac-(2 â†’ 6)-α-Gal disaccharide branching from a →3)-α-D-GlcpNAc-(1 â†’ 3)-ß-D-GlcpNAc-(1→ main chain. Assignment of glycosyltransferases encoded by the CPS biosynthesis gene cluster in the RES-546 genome enabled the first sugar of the K unit, and hence the topology of the K135 CPS, to be determined.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos/análise , Glicosiltransferases/genética , Família Multigênica , Açúcares , Polissacarídeos Bacterianos/química
12.
Carbohydr Res ; 525: 108778, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36857864

RESUMO

A glycopolymer of novel structure was found in the cell wall of plant pathogen Clavibacter phaseoli VKM Ac-2641T (family Microbacteriaceae, class Actinomycetes). The glycopolymer was (1 â†’ 6)-linked ß-d-galactofuranan with side branched trisaccharide, α-D-Manp-(1 â†’ 2)-[α-D-Manp-(1 â†’ 3)]-α-D-Ribf-(1→ at O-2 on every second galactofuranose residue. The galactofuranan structure was established by chemical and NMR spectroscopic methods using one- and two-dimensional techniques 1H,1H COSY, TOCSY, ROESY and 1H,13C HSQC, HMBC. The results of this study provide new data on diversity of bacterial glycopolymers, may prove useful for bacterial taxonomy and contribute to the understanding of the host plant-microbiota interaction mechanisms.


Assuntos
Actinobacteria , Actinomycetales , Clavibacter , Actinomycetales/química , Parede Celular/química , Espectroscopia de Ressonância Magnética
13.
Carbohydr Res ; 529: 108823, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182468

RESUMO

The structures of two cell wall glycopolymers were studied in the plant pathogenic bacterium Clavibacter tesselarius VKM Ac-1406T (family Microbacteriaceae, order Micrococcales, class Actinomycetes). The predominant polymer was a novel (1 â†’ 6)-linked ß-d-galactofuranan with a highly branched repeating unit, α-L-Rhap-(1 â†’ 3)-α-D-Galp-(1 â†’ 2)-[α-L-Rhap-(1 â†’ 3)]-α-D-Fucp-(1 →, at O-2 on every second galactofuranose residue. The second polymer present in small amounts was acidic with the repeating unit, →3)-α-D-Galp-(1 â†’ 3)-α-D-[4,6-S-Pyr]-Manp-(1 â†’ 3)-α-D-Manp-[2OAc]0.2-(1→, and was reported in all Clavibacter species investigated to date. The presented results expand our knowledges of structural diversity of phosphate-free cell wall glycopolymers and provide evidence in support of their taxonomic specificity for bacterial species and genera.


Assuntos
Actinobacteria , Actinomycetales , Clavibacter , Espectroscopia de Ressonância Magnética , Actinomycetales/química , Polímeros , Parede Celular/química
14.
Int J Biol Macromol ; 253(Pt 4): 126993, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37739281

RESUMO

Glycoproteins, in which polysaccharides are usually attached to proteins, are an important class of biomolecules that are widely used as therapeutic agents in clinical treatments for decades. Uropathogenic Escherichia coli (UPEC) O21 has been identified as a serogroup that induces urinary tract infections, with a global increasing number among women and young children. Therefore, there is an urgent need to establish protective vaccines against UPEC infection. Herein, we engineered non-pathogenic E. coli MG1655 to achieve robust, cost-effective de novo biosynthesis of O21 O-antigen polysaccharide-based glycoprotein against UPEC O21. Specifically, this glycoengineered E. coli MG1655 was manipulated for high-efficient glucose-glycerol co-utilization and for the gene cluster installation and O-glycosylation machinery assembly. The key pathways of UDP-sugar precursors were also strengthened to enforce more carbon flux towards the glycosyl donors, which enhanced the glycoprotein titer by 5.6-fold. Further optimization of culture conditions yielded glycoproteins of up to 35.34 mg/L. Glycopeptide MS confirmed the preciset biosynthesis of glycoprotein. This glycoprotein elicited antigen-specific IgG immune responses and significantly reduced kidney and bladder colonization. This bacterial cell-based glyco-platform and optimized strategies can provide a guideline for the biosynthesis of other value-added glycoproteins.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Criança , Feminino , Humanos , Pré-Escolar , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/metabolismo , Antígenos O/genética , Antígenos O/metabolismo , Proteínas de Escherichia coli/metabolismo , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia , Glicoproteínas/genética , Glicoproteínas/metabolismo
15.
Glycobiology ; 22(10): 1321-31, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22730467

RESUMO

The O antigen is an essential component of the lipopolysaccharides on the surface of Gram-negative bacteria and its variation provides a major basis for serotyping schemes. The Escherichia coli O-antigen form O180 was first designated in 2004, and O180 strains were found to contain virulence factors and cause diarrhea. Different O-antigen forms are almost entirely due to genetic variations in the O-antigen gene clusters. In this study, the chemical structure and gene cluster of E. coli O180 O antigen were investigated. A tetrasaccharide repeating unit with the following structure: →4)-ß-D-ManpNAc3NAcA-(1 → 2)-α-L-Rhap(I)-(1 → 3)-ß-L-Rhap(II)-(1 → 4)-α-D-GlcpNAc-(1→was identified in the E. coli O180 O antigen, including the residue D-ManpNAc3NAcA (2,3-diacetamido-2,3-dideoxy-D-mannopyranuronic acid) that had not been hitherto identified in E. coli. Genes in the O-antigen gene cluster were assigned functions based on their similarities with those from available databases, and five genes involved in the synthesis of UDP-D-ManpNAc3NAcA (the nucleotide-activated form of D-ManpNAc3NAcA) were identified. The gnaA gene, encoding the enzyme involved in the initial step of the UDP-D-ManpNAc3NAcA biosynthetic pathway, was cloned and the enzyme product was expressed, purified and assayed for its activity. GnaA was characterized using capillary electrophoresis and electrospray ionization mass spectrometry and identified as a UDP-GlcNAc 6-dehydrogenase. The kinetic and physicochemical parameters of GnaA also were determined.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/química , Hidroliases/química , Hidroliases/metabolismo , Antígenos O/química , Antígenos O/genética , Ácidos Urônicos/química , Ácidos Urônicos/isolamento & purificação , Ácidos Urônicos/metabolismo
16.
Carbohydr Res ; 513: 108531, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35245711

RESUMO

A structurally diverse capsular polysaccharide that surrounds the bacterial cell plays an important role in virulence of Acinetobacter baumannii, a cause of nosocomial infections worldwide. Various isomers of 5,7-diacylamido-3,5,7,9-tetradeoxynon-2-ulosonic acid have been identified as components of bacterial polysaccharides. In this work, we report on the identification of a new isomer having the d-glycero-l-manno configuration (8-epipseudaminic acid) in the capsular polysaccharide of A. baumannii Res546. The higher sugar was isolated by Smith degradation of the polysaccharide followed by mild acid hydrolysis and identified by a comparison with all isomers using NMR spectroscopy and optical rotation.


Assuntos
Acinetobacter baumannii/química , Cápsulas Bacterianas/química , Polissacarídeos Bacterianos/química
17.
Carbohydr Res ; 510: 108435, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34597981

RESUMO

The cell wall glycopolymer structures of plant-associated strains Clavibacter sp. VKM Ac-1371, Clavibacter sp. VKM Ac-1372 and Clavibacter sp. VKM Ac-1374, members of three putative new species (family Microbacteriaceae, class Actinobacteria) were studied. Each strain was found to contain two glycopolymers, neutral and acidic ones. The main chain of neutral polymer, identical in all three strains, is (1 â†’ 6)-linked ß-d-galactofuranan with every second galactofuranose residue substituted at position 2 by side disaccharide, α-d-Manp-(1 â†’ 2)-α-d-Ribf-(1 â†’ . The second, acidic polymer, is pyruvate-containing galactomannan with the repeating unit, →3)-α-d-Galp-(1 â†’ 3)-α-d-[4,6-S-Pyr]-Manp-(1 â†’ 3)-α-d-Manp-(1 â†’ . Reducing mannopyranose residues of the acidic polysaccharides repeating unit from strains VKM Ac-1372 and VKM Ac-1374 bear O-acetyl residues additionally. The cell wall glycopolymer structures were established by chemical and NMR spectroscopic methods with using one- and two-dimensional techniques 1H,1H COSY, TOCSY, ROESY and 1H,13C HSQC, HMBC. The results obtained provide new data on diversity of the bacterial cell wall glycopolymers and may prove valuable for microbial taxonomy and insight into the molecular mechanisms of interactions between bacteria and plants and also of bacterial adaptation to survival in desert systems.


Assuntos
Parede Celular/química , Clavibacter/química , Fucose/química , Galactose/química , Ácido Pirúvico/química , Clavibacter/citologia , Galactose/análogos & derivados , Espectroscopia de Ressonância Magnética , Mananas
18.
Carbohydr Res ; 500: 108247, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33524890

RESUMO

The cell wall of Clavibacter michiganensis subsp. michiganensis VKM Ас-1403Т (family Microbacteriaceae, class Actinobacteria) contains two polysaccharides. The first one is neutral (1 â†’ 6) linked galactofuranan in which every second galactofuranose residue in the main chain substituted at position 3 by side trisaccharide, ß-D-GlcpNAc-(1 â†’ 3)-α-L-Rhap-(1 â†’ 2)-α-D-Fucp-(1 â†’. The second polymer is pyruvylated galactomannan with the repeating unit, →3)-α-D-Galp-(1 â†’ 3)-α-D-[4,6-S-Pyr]-Manp-(1 â†’ 3)-α-D-Manp-(1 â†’. The cell wall glycopolymer structures were established by chemical and NMR spectroscopic methods. The obtained results provide new data on the cell wall composition of plant pathogenic species of the genus Clavibacter and can promote understanding the molecular mechanisms involved in colonization and infection of plants.


Assuntos
Parede Celular/química , Polissacarídeos/química , Configuração de Carboidratos , Clavibacter/química , Clavibacter/citologia
19.
Carbohydr Res ; 499: 108233, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33476839

RESUMO

The cell wall of Rathayibacter caricis VKM Ac-1799T (family Microbacteriaceae, class Actinobacteria) was found to contain both neutral and acidic glycopolymers. The first one is D-rhamnopyranan with main chain →2)-α-D-Rhap-(1 â†’ 3)-α-D-Rhap-(1→, where a part of 2-substituted residues bears as a side-chain at position 3 α-D-Manp residues or disaccharides α-D-Araf-(1→2)-α-D-Manp-(1 â†’ . The second polymer is a teichuronic acid with a branched repeating units composed of seven monosaccharides →4)-α-[ß-D-Manp-(1 â†’ 3)]-D-Glcp-(1 â†’ 4)-ß-D-GlcpA-(1 â†’ 2)-ß-[4,6Pyr]-D-Manp-(1 â†’ 4)-ß-L-Rhap-(1 â†’ 4)-ß-D-Glcp-(1 â†’ 4)-ß-D-Glcp-(1 â†’ . The structures of the polymers were determined by chemical and NMR spectroscopic methods.


Assuntos
Actinobacteria/química , Parede Celular/química , Desoxiaçúcares/análise , Mananas/análise , Ácidos Urônicos/análise , Concentração de Íons de Hidrogênio , Hidrólise , Espectroscopia de Ressonância Magnética
20.
Res Microbiol ; 172(3): 103815, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667610

RESUMO

The K92 capsular polysaccharide (CPS) from Acinetobacter baumannii B8300 was studied by sugar analysis, Smith degradation, and one- and two-dimensional 1H and 13C NMR spectroscopy. The elucidated CPS includes a branched pentasaccharide repeat unit containing one d-Galp and four l-Rhap residues; an atypical composition given that all A. baumannii CPS structures determined to date contain at least one amino sugar. Accordingly, biosynthesis of A. baumannii CPS types are initiated by initiating transferases (Itrs) that transfer 1-phosphate of either a 2-acetamido-2-deoxy-d-hexose, a 2-acetamido-2,6-dideoxy-d-hexose or a 2-acetamido-4-acylamino-2,4,6-trideoxy-d-hexose to an undecaprenyl phosphate (UndP) carrier. However, the KL92 capsule biosynthesis gene cluster in the B8300 genome sequence includes a gene for a novel Itr type, ItrA4, which is predicted to begin synthesis of the K92 CPS by transferring D-Galp 1-phosphate to the UndP lipid carrier. The itrA4 gene was found in a module transcribed in the opposite direction to the majority of the K locus. This module also includes an unknown open reading frame (orfKL92), a gtr166 glycosyltransferase gene, and a wzi gene predicted to be involved in the attachment of CPS to the cell surface. Investigation into the origins of orfKL92-gtr166-itrA4-wziKL92 revealed it might have originated from Acinetobacter junii.


Assuntos
Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Amino Açúcares/análise , Cápsulas Bacterianas/química , Polissacarídeos Bacterianos/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/enzimologia , Adulto , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Família Multigênica , Polissacarídeos Bacterianos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA