Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 37(24): 4719-4726, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323970

RESUMO

MOTIVATION: The output of electrospray ionization-liquid chromatography mass spectrometry (ESI-LC-MS) is influenced by multiple sources of noise and major contributors can be broadly categorized as baseline, random and chemical noise. Noise has a negative impact on the identification and quantification of peptides, which influences the reliability and reproducibility of MS-based proteomics data. Most attempts at denoising have been made on either spectra or chromatograms independently, thus, important 2D information is lost because the mass-to-charge ratio and retention time dimensions are not considered jointly. RESULTS: This article presents a novel technique for denoising raw ESI-LC-MS data via 2D undecimated wavelet transform, which is applied to proteomics data acquired by data-independent acquisition MS (DIA-MS). We demonstrate that denoising DIA-MS data results in the improvement of peptide identification and quantification in complex biological samples. AVAILABILITY AND IMPLEMENTATION: The software is available on Github (https://github.com/CMRI-ProCan/CRANE). The datasets were obtained from ProteomeXchange (Identifiers-PXD002952 and PXD008651). Preliminary data and intermediate files are available via ProteomeXchange (Identifiers-PXD020529 and PXD025103). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Peptídeos , Software , Reprodutibilidade dos Testes , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos
2.
Cancer Cell ; 40(8): 835-849.e8, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839778

RESUMO

The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.


Assuntos
Neoplasias , Proteômica , Biomarcadores Tumorais/genética , Linhagem Celular , Humanos , Neoplasias/genética , Proteoma/metabolismo , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA