RESUMO
Dihydrofolate reductase (DHFR) is a prominent molecular target in antitumor, antibacterial, antiprotozoan, and immunosuppressive chemotherapies, and CK2 protein kinase is an ubiquitous enzyme involved in many processes, such as tRNA and rRNA synthesis, apoptosis, cell cycle or oncogenic transformation. We show for the first time that CK2α subunit strongly interacted with and phosphorylated DHFR in vitro. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we determined DHFR-CK2α binding kinetic parameters (Kd below 0.5⯵M, konâ¯=â¯10.31â¯×â¯104â¯M-1s-1 and koffâ¯=â¯1.40â¯×â¯10-3s-1) and calculated Gibbs free energy (-36.4â¯kJ/mol). In order to identify phosphorylation site(s) we used site-directed mutagenesis to obtain several DHFR mutants with predicted CK2-phosphorylable serine or threonine residues substituted with alanines. All enzyme forms were subjected to CK2α subunit catalytic activity and the results pointed to serine 168 as a phosphorylation site. Mass spectrometry analyses confirmed the presence of phosphoserine 168 and revealed additionally the presence of phosphoserine 145, although the latter phosphorylation was on a very low level.
Assuntos
Tetra-Hidrofolato Desidrogenase/metabolismo , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico , Humanos , Cinética , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Especificidade por SubstratoRESUMO
Complexation of tetrakis(µ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters.
Assuntos
Ácidos Carboxílicos/química , Formamidas/química , Compostos Organometálicos/química , Teoria Quântica , Ródio/química , Aminas/química , Isocianatos/química , Isotiocianatos/química , Ligantes , Nitrilas/químicaRESUMO
Thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT) constitute the thymidylate synthesis cycle providing thymidylate for DNA synthesis and repair. Our previous studies indicated that TS and DHFR are the substrates of protein kinase CK2. This work has been aimed at the elucidation of the effect of CK2 activity on cell cycle progression, thymidylate synthesis enzyme expression and localization, and the role of CK2-mediated TS phosphorylation in in vitro di- and trimolecular complex formation. The results were obtained by means of western blot, confocal microscopy, flow cytometry, quantitative polymerase chain reaction (QPCR), quartz crystal microbalance with dissipation monitoring (QCM-D), and microthermophoresis (MST). Our research indicates that CK2 inhibition does not change the levels of the transcripts; however, it affects the protein levels of DHFR and TS in both tested cell lines, i.e., A549 and CCRF-CEM, and the level of SHMT1 in CCRF-CEM cells. Moreover, we show that CK2-mediated phosphorylation of TS enables the protein (pTS) interaction with SHMT1 and leads to the stability of the tri-complex containing SHMT1, DHFR, and pTS. Our results suggest an important regulatory role of CK2-mediated phosphorylation for inter- and intracellular protein level of enzymes involved in the thymidylate biosynthesis cycle.
RESUMO
Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) play essential role in DNA synthesis, repair and cell division by catalyzing two subsequent reactions in thymidylate biosynthesis cycle. The lack of either enzyme leads to thymineless death of the cell, therefore inhibition of the enzyme activity is a common and successful tool in cancer chemotherapy and treatment of other diseases. However, the detailed mechanism of thymidylate synthesis cycle, especially the interactions between cycle enzymes and its role remain unknown. In this paper we are the first to show that human TS and DHFR enzymes form a strong complex which might be essential for DNA synthesis. Using two unique biosensor techniques, both highly sensitive to biomolecular interactions, namely quartz crystal microbalance with dissipation monitoring (QCM-D) and microscale thermophoresis (MST) we have been able to determine DHFR-TS binding kinetic parameters such as the Kd value being below 10 µM (both methods), k(on) = 0.46 × 10(4) M(-1) s(-1) and k(off) = 0.024 s(-1) (QCM-D). We also calculated Gibbs free energy as in the order of -30 kJ/mol and DHFR/TS molar ratio pointing to binding of 6 DHFR monomers per 1 TS dimer (both methods). Moreover, our data from MST analysis have pointed to positive binding cooperativity in TS-DHFR complex formation. The results obtained with both methods are comparable and complementary.