RESUMO
Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience-driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next-generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIß (Topo IIß), and knockdown of Topo IIß attenuates both DSB formation and early-response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.
Assuntos
Quebras de DNA de Cadeia Dupla , Neurônios/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fator de Ligação a CCCTC , DNA Topoisomerases Tipo II/análise , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Etoposídeo/farmacologia , Regulação da Expressão Gênica , Genes fos , Estudo de Associação Genômica Ampla , Camundongos , Proteínas Repressoras/metabolismo , Transcriptoma/efeitos dos fármacosRESUMO
Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of ß-amyloid (Aß)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aß-associated neurotoxicity and AD-like pathology.
Assuntos
Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Calpaína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cognição , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Endocitose , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Camundongos , Proteínas do Tecido Nervoso/genética , Fosfotransferases , Receptores de N-Metil-D-Aspartato/metabolismo , SinapsesRESUMO
Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata.
Assuntos
Medo , Memória de Longo Prazo , Plasticidade Neuronal , Animais , Epigênese Genética , Hipocampo/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , TranscriptomaRESUMO
Aberrant activity of cyclin-dependent kinase (Cdk5) has been implicated in various neurodegenerative diseases. This deleterious effect is mediated by pathological cleavage of the Cdk5 activator p35 into the truncated product p25, leading to prolonged Cdk5 activation and altered substrate specificity. Elevated p25 levels have been reported in humans and rodents with neurodegeneration, and the benefit of genetically blocking p25 production has been demonstrated previously in rodent and human neurodegenerative models. Here, we report a 12-amino-acid-long peptide fragment derived from Cdk5 (Cdk5i) that is considerably smaller than existing peptide inhibitors of Cdk5 (P5 and CIP) but shows high binding affinity toward the Cdk5/p25 complex, disrupts the interaction of Cdk5 with p25, and lowers Cdk5/p25 kinase activity. When tagged with a fluorophore (FITC) and the cell-penetrating transactivator of transcription (TAT) sequence, the Cdk5i-FT peptide exhibits cell- and brain-penetrant properties and confers protection against neurodegenerative phenotypes associated with Cdk5 hyperactivity in cell and mouse models of neurodegeneration, highlighting Cdk5i's therapeutic potential.
Assuntos
Quinase 5 Dependente de Ciclina , Peptídeos , Camundongos , Animais , Humanos , Quinase 5 Dependente de Ciclina/metabolismo , Fosforilação , Peptídeos/metabolismo , Fragmentos de Peptídeos/metabolismo , FenótipoRESUMO
Synaptic cell-adhesion molecules (CAMs) organize the architecture and properties of neural circuits. However, whether synaptic CAMs are involved in activity-dependent remodeling of specific neural circuits is incompletely understood. Leucine-rich repeat transmembrane protein 3 (LRRTM3) is required for the excitatory synapse development of hippocampal dentate gyrus (DG) granule neurons. Here, we report that Lrrtm3-deficient mice exhibit selective reductions in excitatory synapse density and synaptic strength in projections involving the medial entorhinal cortex (MEC) and DG granule neurons, accompanied by increased neurotransmitter release and decreased excitability of granule neurons. LRRTM3 deletion significantly reduced excitatory synaptic innervation of hippocampal mossy fibers (Mf) of DG granule neurons onto thorny excrescences in hippocampal CA3 neurons. Moreover, LRRTM3 loss in DG neurons significantly decreased mossy fiber long-term potentiation (Mf-LTP). Remarkably, silencing MEC-DG circuits protected against the decrease in the excitatory synaptic inputs onto DG and CA3 neurons, excitability of DG granule neurons, and Mf-LTP in Lrrtm3-deficient mice. These results suggest that LRRTM3 may be a critical factor in activity-dependent synchronization of the topography of MEC-DG-CA3 excitatory synaptic connections. Collectively, our data propose that LRRTM3 shapes the target-specific structural and functional properties of specific hippocampal circuits.
Assuntos
Sincronização Cortical/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/metabolismo , Rede Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Sinapses/fisiologia , Animais , Região CA3 Hipocampal/metabolismo , Giro Denteado/metabolismo , Córtex Entorrinal/metabolismo , Potenciação de Longa Duração , Proteínas de Membrana/deficiência , Camundongos Knockout , Fibras Musgosas Hipocampais/metabolismo , Proteínas do Tecido Nervoso/deficiência , Neurônios/metabolismo , Pseudópodes/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
Change history: In this Article, Extended Data Fig. 8 and Extended Data Table 1 contained errors, which have been corrected online.
RESUMO
Neuromyelitis optica (NMO) is an autoimmune disease that primarily targets astrocytes. Autoantibodies (NMO-IgG) against the water channel protein, aquaporin 4 (AQP4), are a serologic marker in NMO patients, and they are known to be responsible for the pathophysiology of the disease. In the brain, AQP4 is mainly expressed in astrocytes, especially at the end-feet, where they form the blood-brain barrier. Following the interaction between NMO-IgG and AQP4 in astrocytes, rapid AQP4 endocytosis initiates pathogenesis. However, the cellular and molecular mechanisms of astrocyte destruction by autoantibodies remain largely elusive. We established an in vitro human astrocyte model system using induced pluripotent stem cells (iPSCs) technology in combination with NMO patient-derived serum and IgG to elucidate the cellular and functional changes caused by NMO-IgG. Herein, we observed that NMO-IgG induces structural alterations in mitochondria and their association with the endoplasmic reticulum (ER) and lysosomes at the ultrastructural level, which potentially leads to impaired mitochondrial functions and dynamics. Indeed, human astrocytes display impaired mitochondrial bioenergetics and autophagy activity in the presence of NMO-IgG. We further demonstrated NMO-IgG-driven ER membrane deformation into a multilamellar structure in human astrocytes. Together, we show that NMO-IgG rearranges cellular organelles and alter their functions and that our in vitro system using human iPSCs offers previously unavailable experimental opportunities to study the pathophysiological mechanisms of NMO in human astrocytes or conduct large-scale screening for potential therapeutic compounds targeting astrocytic abnormalities in patients with NMO.
Assuntos
Astrócitos/imunologia , Autoanticorpos/imunologia , Retículo Endoplasmático/imunologia , Imunoglobulina G/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Mitocôndrias/imunologia , Neuromielite Óptica/imunologia , Aquaporina 4/imunologia , HumanosRESUMO
Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-ß (Aß)1-40 and Aß 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aß. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aß1-40 and Aß1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.
Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Ritmo Gama , Microglia/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/prevenção & controle , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Forma Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Ritmo Gama/efeitos da radiação , Interneurônios/metabolismo , Interneurônios/efeitos da radiação , Luz , Masculino , Camundongos , Microglia/citologia , Microglia/efeitos da radiação , Optogenética , Parvalbuminas/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/terapia , Transcriptoma , Córtex Visual/fisiologia , Córtex Visual/efeitos da radiaçãoRESUMO
L-serine is a non-essential amino acid endogenously produced by astrocytes and is abundant in human diets. Beneficial roles of the metabolic products from L-serine in various conditions in the brain including neuronal development have been reported. Through several preclinical studies, L-serine treatment was also shown to offer beneficial therapeutic effects for brain damage such as ischemic stroke, amyotrophic lateral sclerosis, and Parkinson's disease. Despite evidence for the value of L-serine in the clinic, however, its beneficial effects on the propionic acid (PPA)-induced neuronal toxicity and underlying mechanisms of L-serine-mediated neuroprotection are unknown. In this study, we observed that PPA-induced acidic stress induces abnormal lipid accumulation and functional defects in lysosomes of hippocampal neurons. L-serine treatment was able to rescue the structure and function of lysosomes in PPA-treated hippocampal neuronal cells. We further identified that L-serine suppressed the formation of lipid droplets and abnormal lipid membrane accumulations inside the lysosomes in PPA-treated hippocampal neuronal cells. Taken together, these findings indicate that L-serine can be utilized as a neuroprotective agent for the functionality of lysosomes through restoration of cathepsin D in disease conditions.
Assuntos
Catepsina D , Fármacos Neuroprotetores , Catepsina D/metabolismo , Humanos , Lisossomos/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Propionatos/farmacologia , Serina/metabolismo , Serina/farmacologiaRESUMO
Diverse molecular mechanisms regulate synaptic composition and function in the mammalian nervous system. The multifunctional protein arginine methyltransferase 8 (PRMT8) possesses both methyltransferase and phospholipase activities. Here we examine the role of this neuron-specific protein in hippocampal plasticity and cognitive function. PRMT8 protein localizes to synaptic sites, and conditional whole-brain Prmt8 deletion results in altered levels of multiple synaptic proteins in the hippocampus, using both male and female mice. Interestingly, these altered protein levels are due to post-transcriptional mechanisms as the corresponding mRNA levels are unaffected. Strikingly, electrophysiological recordings from hippocampal slices of mice lacking PRMT8 reveal multiple defects in excitatory synaptic function and plasticity. Furthermore, behavioral analyses show that PRMT8 conditional knock-out mice exhibit impaired hippocampal-dependent fear learning. Together, these findings establish PRMT8 as an important component of the molecular machinery required for hippocampal neuronal function.SIGNIFICANCE STATEMENT Numerous molecular processes are critically required for normal brain function. Here we use mice lacking protein arginine methyltransferase 8 (PRMT8) in the brain to examine how loss of this protein affects the structure and function of neurons in the hippocampus. We find that PRMT8 localizes to the sites of communication between neurons. Hippocampal neurons from mice lacking PRMT8 have no detectable structural differences compared with controls; however, multiple aspects of their function are altered. Consistently, we find that mice lacking PRMT8 also exhibit reduced hippocampus-dependent memory. Together, our findings establish important roles for PRMT8 in regulating neuron function and cognition in the mammalian brain.
Assuntos
Hipocampo/fisiopatologia , Transtornos da Memória/fisiopatologia , Transtornos Mentais/fisiopatologia , Proteína-Arginina N-Metiltransferases/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Animais , Feminino , Hipocampo/patologia , Masculino , Transtornos da Memória/complicações , Transtornos da Memória/patologia , Transtornos Mentais/complicações , Transtornos Mentais/patologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Proteína-Arginina N-Metiltransferases/genética , Sinapses/patologiaRESUMO
Increased p25, a proteolytic fragment of the regulatory subunit p35, is known to induce aberrant activity of cyclin-dependent kinase 5 (Cdk5), which is associated with neurodegenerative disorders, including Alzheimer's disease. Previously, we showed that replacing endogenous p35 with the noncleavable mutant p35 (Δp35) attenuated amyloidosis and improved cognitive function in a familial Alzheimer's disease mouse model. Here, to address the role of p25/Cdk5 in tauopathy, we generated double-transgenic mice by crossing mice overexpressing mutant human tau (P301S) with Δp35KI mice. We observed significant reduction of phosphorylated tau and its seeding activity in the brain of double transgenic mice compared with the P301S mice. Furthermore, synaptic loss and impaired LTP at hippocampal CA3 region of P301S mice were attenuated by blocking p25 generation. To further validate the role of p25/Cdk5 in tauopathy, we used frontotemporal dementia patient-derived induced pluripotent stem cells (iPSCs) carrying the Tau P301L mutation and generated P301L:Δp35KI isogenic iPSC lines using CRISPR/Cas9 genome editing. We created cerebral organoids from the isogenic iPSCs and found that blockade of p25 generation reduced levels of phosphorylated tau and increased expression of synaptophysin. Together, these data demonstrate a crucial role for p25/Cdk5 in mediating tau-associated pathology and suggest that inhibition of this kinase can remedy neurodegenerative processes in the presence of pathogenic tau mutation.SIGNIFICANCE STATEMENT Accumulation of p25 results in aberrant Cdk5 activation and induction of numerous pathological phenotypes, such as neuroinflammation, synaptic loss, Aß accumulation, and tau hyperphosphorylation. However, it was not clear whether p25/Cdk5 activity is necessary for the progression of these pathological changes. We recently developed the Δp35KI transgenic mouse that is deficient in p25 generation and Cdk5 hyperactivation. In this study, we used this mouse model to elucidate the role of p25/Cdk5 in FTD mutant tau-mediated pathology. We also used a frontotemporal dementia patient-derived induced pluripotent stem cell carrying the Tau P301L mutation and generated isogenic lines in which p35 is replaced with noncleavable mutant Δp35. Our data suggest that p25/Cdk5 plays an important role in tauopathy in both mouse and human model systems.
Assuntos
Quinase 5 Dependente de Ciclina/genética , Demência Frontotemporal/genética , Fosfotransferases/genética , Células-Tronco Pluripotentes , Tauopatias/genética , Animais , Região CA3 Hipocampal/patologia , Região CA3 Hipocampal/fisiopatologia , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Demência Frontotemporal/prevenção & controle , Humanos , Potenciação de Longa Duração/genética , Camundongos , Camundongos Transgênicos , Fibras Musgosas Hipocampais/patologia , Fosforilação , Fosfotransferases/antagonistas & inibidores , Transplante de Células-Tronco , Sinapses/patologia , Sinaptofisina/genética , Tauopatias/prevenção & controleRESUMO
Cognitive decline is a debilitating feature of most neurodegenerative diseases of the central nervous system, including Alzheimer's disease. The causes leading to such impairment are only poorly understood and effective treatments are slow to emerge. Here we show that cognitive capacities in the neurodegenerating brain are constrained by an epigenetic blockade of gene transcription that is potentially reversible. This blockade is mediated by histone deacetylase 2, which is increased by Alzheimer's-disease-related neurotoxic insults in vitro, in two mouse models of neurodegeneration and in patients with Alzheimer's disease. Histone deacetylase 2 associates with and reduces the histone acetylation of genes important for learning and memory, which show a concomitant decrease in expression. Importantly, reversing the build-up of histone deacetylase 2 by short-hairpin-RNA-mediated knockdown unlocks the repression of these genes, reinstates structural and synaptic plasticity, and abolishes neurodegeneration-associated memory impairments. These findings advocate for the development of selective inhibitors of histone deacetylase 2 and suggest that cognitive capacities following neurodegeneration are not entirely lost, but merely impaired by this epigenetic blockade.
Assuntos
Encéfalo/fisiopatologia , Epigênese Genética , Histona Desacetilase 2/genética , Transtornos da Memória/genética , Transtornos da Memória/fisiopatologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Acetilação/efeitos dos fármacos , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histona Desacetilase 2/deficiência , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Transtornos da Memória/complicações , Camundongos , Doenças Neurodegenerativas/complicações , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Fragmentos de Peptídeos/toxicidade , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA Polimerase II/metabolismo , Receptores de Glucocorticoides/metabolismoRESUMO
Repeated stress has been suggested to underlie learning and memory deficits via the basolateral amygdala (BLA) and the hippocampus; however, the functional contribution of BLA inputs to the hippocampus and their molecular repercussions are not well understood. Here we show that repeated stress is accompanied by generation of the Cdk5 (cyclin-dependent kinase 5)-activator p25, up-regulation and phosphorylation of glucocorticoid receptors, increased HDAC2 expression, and reduced expression of memory-related genes in the hippocampus. A combination of optogenetic and pharmacosynthetic approaches shows that BLA activation is both necessary and sufficient for stress-associated molecular changes and memory impairments. Furthermore, we show that this effect relies on direct glutamatergic projections from the BLA to the dorsal hippocampus. Finally, we show that p25 generation is necessary for the stress-induced memory dysfunction. Taken together, our data provide a neural circuit model for stress-induced hippocampal memory deficits through BLA activity-dependent p25 generation.
Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Quinase 5 Dependente de Ciclina/metabolismo , Hipocampo/fisiopatologia , Deficiências da Aprendizagem/fisiopatologia , Transtornos da Memória/fisiopatologia , Animais , Complexo Nuclear Basolateral da Amígdala/efeitos da radiação , Hipocampo/efeitos da radiação , Luz , Camundongos , Estresse FisiológicoRESUMO
Alzheimer's disease (AD) is a progressive neurodegenerative disease that represents a major cause of death in many countries. AD is characterized by profound memory loss, disruptions in thinking and reasoning, and changes in personality and behavior followed by malfunctions in various bodily systems. Although AD was first identified over 100 years ago, and tremendous efforts have been made to cure the disease, the precise mechanisms underlying the onset of AD remain unclear. The recent development of next-generation sequencing tools and bioinformatics has enabled us to investigate the role of genetics in the pathogenesis of AD. In this review, we discuss novel discoveries in this area, including the results of genome-wide association studies (GWAS) that have implicated a number of novel genes as risk factors, as well as the identification of epigenetic regulators strongly associated with the onset and progression of AD. We also review how genetic risk factors may interact with age-associated, progressive decreases in cognitive function in patients with AD.
Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Fatores Etários , Animais , Epigênese Genética , Regulação da Expressão Gênica , Variação Genética , Genômica/métodos , Humanos , Pesquisa , Fatores de RiscoRESUMO
Perturbations in fast-spiking parvalbumin (PV) interneurons are hypothesized to be a major component of various neuropsychiatric disorders; however, the mechanisms regulating PV interneurons remain mostly unknown. Recently, cyclin-dependent kinase 5 (Cdk5) has been shown to function as a major regulator of synaptic plasticity. Here, we demonstrate that genetic ablation of Cdk5 in PV interneurons in mouse brain leads to an increase in GABAergic neurotransmission and impaired synaptic plasticity. PVCre;fCdk5 mice display a range of behavioral abnormalities, including decreased anxiety and memory impairment. Our results reveal a central role of Cdk5 expressed in PV interneurons in gating inhibitory neurotransmission and underscore the importance of such regulation during behavioral tasks. Our findings suggest that Cdk5 can be considered a promising therapeutic target in a variety of conditions attributed to inhibitory interneuronal dysfunction, such as epilepsy, anxiety disorders, and schizophrenia.
Assuntos
Ansiedade/psicologia , Quinase 5 Dependente de Ciclina/genética , Inibição Psicológica , Interneurônios/metabolismo , Transtornos da Memória/psicologia , Parvalbuminas/metabolismo , Animais , Ansiedade/genética , Comportamento Animal/fisiologia , Interneurônios/enzimologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Ácido gama-Aminobutírico/metabolismoRESUMO
Diacylglycerol (DAG) is an important lipid second messenger. DAG signalling is terminated by conversion of DAG to phosphatidic acid (PA) by diacylglycerol kinases (DGKs). The neuronal synapse is a major site of DAG production and action; however, how DGKs are targeted to subcellular sites of DAG generation is largely unknown. We report here that postsynaptic density (PSD)-95 family proteins interact with and promote synaptic localization of DGKι. In addition, we establish that DGKι acts presynaptically, a function that contrasts with the known postsynaptic function of DGKζ, a close relative of DGKι. Deficiency of DGKι in mice does not affect dendritic spines, but leads to a small increase in presynaptic release probability. In addition, DGKι-/- synapses show a reduction in metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) at neonatal (â¼2 weeks) stages that involve suppression of a decrease in presynaptic release probability. Inhibition of protein kinase C normalizes presynaptic release probability and mGluR-LTD at DGKι-/- synapses. These results suggest that DGKι requires PSD-95 family proteins for synaptic localization and regulates presynaptic DAG signalling and neurotransmitter release during mGluR-LTD.
Assuntos
Encéfalo/metabolismo , Diacilglicerol Quinase/análise , Diacilglicerol Quinase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Animais , Encéfalo/ultraestrutura , Linhagem Celular , Células Cultivadas , Diacilglicerol Quinase/genética , Maleato de Dizocilpina/metabolismo , Deleção de Genes , Expressão Gênica , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão SinápticaRESUMO
Protein chips are powerful tools as analytical and diagnostic devices for detection of biomolecular interactions, where the proteins are covalently or noncovalently attached to biosensing surfaces to capture and detect target molecules or biomarkers. Thus, fabrication of biosensing surfaces for regio- and chemoselective immobilization of biomolecules is a crucial step for better biosensor performance. In our previous studies, a regio- and chemoselective immobilization strategy was demonstrated on glass surfaces. This strategy is now used to regioselectively attach proteins to self-assembled monolayers (SAMs) on gold surfaces. Recombinant green fluorescent protein (GFP), glutathione S-transferase (GST), and antibody-binding protein G, bearing a C-terminal CVIA motif, were prepared and a farnesyl analogue with an ω-alkyne moiety was attached to the sulfhydryl moiety in the cysteine side chain by protein farnesyltransferase. The proteins, modified with the bioorthogonal alkyne functional group, were covalently and regioselectively immobilized on thiol or dithiocarbamate (DTC) SAMs on a gold surface by a Huigsen [3 + 2] cycloaddition reaction with minimal nonspecific binding. A concentration-dependent increase of fluorescence intensity was observed in wells treated with GFP on both thiol- and DTC-SAMs. The highly ordered, densely packed layer allowed for a high loading of immobilized protein, with a concomitant increase in substrate binding capacity. The DTC-SAMs were substantially more resistant to displacement of the immobilized proteins from the gold surface by ß-mercaptoethanol than alkane-thiol SAMs.
Assuntos
Ouro/química , Proteínas/química , Glutationa Transferase/química , Proteínas de Fluorescência Verde/química , Propriedades de SuperfícieRESUMO
Antibody arrays are a useful for detecting antigens and other antibodies. This technique typically requires a uniform and well-defined orientation of antibodies attached to a surface for optimal performance. A uniform orientation can be achieved by modification of antibodies to include a single site for attachment. Thus, uniformly oriented antibody arrays require a bioengineered modification for the antibodies directly immobilization on the solid surface. In this study, we describe a "sandwich-type" antibody array where unmodified antibodies are oriented through binding with regioselectively immobilized recombinant antibody-binding protein L. Recombinant proL-CVIA bearing C-terminal CVIA motif is post-translationally modified with an alkyne group by protein farnesyltransferase (PFTase) at the cysteine residue in the CVIA sequence to give proL-CVIApf, which is covalently attached to an azido-modified glass slide by a Huisgen [3 + 2] cycloaddition reaction. Slides bearing antibodies bound to slides coated with regioselectively immobilized proL-CVIApf gave stronger fluorescence outputs and those where the antibody-binding protein was immobilized in random orientations on an epoxy-modified slide. Properly selected capture and detection antibodies did not cross-react with immobilized proL-CVIApf in sandwich arrays, and the proL-CVIApf slides can be used for multiple cycles of detected over a period of several months.
Assuntos
Anticorpos Imobilizados/química , Análise Serial de Proteínas/métodosRESUMO
Immobilized antibodies are useful for the detection of antigens in highly sensitive microarray diagnostic applications. Arrays with the antibodies attached regioselectively in a uniform orientation are typically more sensitive than those with random orientations. Direct regioselective immobilization of antibodies on a solid support typically requires a modified form of the protein. We now report a general approach for the regioselective attachment of antibodies to a surface using truncated forms of antibody-binding proteins A, G, and L that retain the structural motifs required for antibody binding. The recombinant proteins have a C-terminal CVIX protein farnesyltransferase recognition motif that allows us to append a bioorthogonal azide or alkyne moiety and use the Cu(I)-catalyzed Huisgen cycloaddition to attach the binding proteins to a suitably modified glass surface. This approach offers several advantages. The recombinant antibody-binding proteins are produced in Escherichia coli, chemoselectively modified posttranslationally in the cell-free homogenate, and directly attached to the glass surface without the need for purification at any stage of the process. Complexes between immobilized recombinant proteins A, G, and L and their respective strongly bound antibodies were stable to repeated washing with PBST buffer at pH 7.2. However, the antibodies could be stripped from the slides by treatment with 0.1 M glycine·HCl buffer, pH 2.6, for 30 min and regenerated by shaking with PBS buffer, pH 7.2, at 4 °C overnight. The recombinant forms of proteins A, G, and L can be used separately or in combination to give glass surfaces capable of binding a wide variety of antibodies.
Assuntos
Anticorpos/análise , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas Imobilizadas/química , Análise Serial de Proteínas/métodos , Proteína Estafilocócica A/química , Proteínas de Bactérias/genética , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas Imobilizadas/genética , Peptostreptococcus/química , Peptostreptococcus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteína Estafilocócica A/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética , Estereoisomerismo , Streptococcus/química , Streptococcus/genéticaRESUMO
Diacylglycerol (DAG) is an important lipid signalling molecule that exerts an effect on various effector proteins including protein kinase C. A main mechanism for DAG removal is to convert it to phosphatidic acid (PA) by DAG kinases (DGKs). However, it is not well understood how DGKs are targeted to specific subcellular sites and tightly regulates DAG levels. The neuronal synapse is a prominent site of DAG production. Here, we show that DGKzeta is targeted to excitatory synapses through its direct interaction with the postsynaptic PDZ scaffold PSD-95. Overexpression of DGKzeta in cultured neurons increases the number of dendritic spines, which receive the majority of excitatory synaptic inputs, in a manner requiring its catalytic activity and PSD-95 binding. Conversely, DGKzeta knockdown reduces spine density. Mice deficient in DGKzeta expression show reduced spine density and excitatory synaptic transmission. Time-lapse imaging indicates that DGKzeta is required for spine maintenance but not formation. We propose that PSD-95 targets DGKzeta to synaptic DAG-producing receptors to tightly couple synaptic DAG production to its conversion to PA for the maintenance of spine density.