Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2318420121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621136

RESUMO

In response to an immune challenge, naive T cells undergo a transition from a quiescent to an activated state acquiring the effector function. Concurrently, these T cells reprogram cellular metabolism, which is regulated by iron. We and others have shown that iron homeostasis controls proliferation and mitochondrial function, but the underlying mechanisms are poorly understood. Given that iron derived from heme makes up a large portion of the cellular iron pool, we investigated iron homeostasis in T cells using mice with a T cell-specific deletion of the heme exporter, FLVCR1 [referred to as knockout (KO)]. Our finding revealed that maintaining heme and iron homeostasis is essential to keep naive T cells in a quiescent state. KO naive CD4 T cells exhibited an iron-overloaded phenotype, with increased spontaneous proliferation and hyperactive mitochondria. This was evidenced by reduced IL-7R and IL-15R levels but increased CD5 and Nur77 expression. Upon activation, however, KO CD4 T cells have defects in proliferation, IL-2 production, and mitochondrial functions. Iron-overloaded CD4 T cells failed to induce mitochondrial iron and exhibited more fragmented mitochondria after activation, making them susceptible to ferroptosis. Iron overload also led to inefficient glycolysis and glutaminolysis but heightened activity in the hexosamine biosynthetic pathway. Overall, these findings highlight the essential role of iron in controlling mitochondrial function and cellular metabolism in naive CD4 T cells, critical for maintaining their quiescent state.


Assuntos
Linfócitos T CD4-Positivos , Ferro , Camundongos , Animais , Ferro/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Heme/metabolismo
2.
Nat Chem Biol ; 20(10): 1282-1293, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38664586

RESUMO

The natural product hinokitiol mobilizes iron across lipid bilayers at low concentrations and restores hemoglobinization in iron transporter protein-deficient systems. But hinokitiol fails to similarly mobilize iron at higher concentrations, limiting its uses in chemical biology and medicine. Here we show that at higher concentrations, hinokitiol3:Fe(III) complexes form large, higher-order aggregates, leading to loss of transmembrane iron mobilization. Guided by this understanding and systematic structure-function studies enabled by modular synthesis, we identified FeM-1269, which minimally aggregates and dose-dependently mobilizes iron across lipid bilayers even at very high concentrations. In contrast to hinokitiol, FeM-1269 is also well-tolerated in animals at high doses for extended periods of time. In a mouse model of anemia of inflammation, FeM-1269 increases serum iron, transferrin saturation, hemoglobin and hematocrit. This rationally developed iron-mobilizing small molecule has enhanced potential as a molecular prosthetic for understanding and potentially treating iron transporter deficiencies.


Assuntos
Ferro , Animais , Ferro/metabolismo , Ferro/química , Camundongos , Tropolona/análogos & derivados , Tropolona/química , Tropolona/farmacologia , Bicamadas Lipídicas/metabolismo , Bicamadas Lipídicas/química , Compostos Férricos/química , Compostos Férricos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Relação Estrutura-Atividade
3.
Proc Natl Acad Sci U S A ; 119(26): e2121400119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737834

RESUMO

Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor-dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.


Assuntos
Ferro , Macrófagos , Monoterpenos , Tropolona/análogos & derivados , Animais , Proteínas de Transporte de Cátions/deficiência , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Macrófagos/metabolismo , Camundongos , Monoterpenos/metabolismo , Transferrina/metabolismo , Tropolona/metabolismo , Peixe-Zebra/metabolismo
4.
J Nutr ; 154(1): 213-223, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984743

RESUMO

BACKGROUND: Manganese (Mn) is an essential micronutrient, but inadequate or excess Mn intake can have a detrimental impact on human health. Despite the essentiality, little is known about the relationship between Mn and sleep. OBJECTIVE: This study aimed to examine the relationship between blood Mn concentrations and sleep outcomes in US adults. METHODS: This cross-sectional study used data on blood Mn and sleep from the 2017-2020 National Health and Nutrition Examination Survey (NHANES) (n = 8356, age ≥18 y). Multivariable logistic regression was used to examine associations between quintiles of blood Mn concentrations and subjective sleep outcomes (short sleep duration, late sleep midpoint, trouble sleeping, and obstructive sleep apnea [OSA] symptoms), adjusting for age, gender, body mass index, race/ethnicity, income, smoking, inflammation-adjusted serum ferritin concentration (iron status), caffeine, and alcohol intake. Gender-stratified models were used due to interactions with gender. RESULTS: The mean (SE) blood Mn concentration was 9.7 (0.1) µg/L in US adults. In males, a nonlinear association was noted in the relationship between blood Mn levels and short sleep duration on weekdays and weekends. The third Mn quintile (Q3) group had lower odds of short sleep duration (<7 h) on weekdays (odds ratio [OR]=0.6, 95% confidence interval [CI]: 0.4, 0.9) than the lowest Mn quintile (Q1, reference) after adjusting for covariates in males. The second Mn quintile (Q2) group had lower odds of late sleep midpoint on weekdays than Q1 (OR=0.6, 95% CI: 0.4, 0.8). In females, Q2 group had lower odds of OSA symptoms than Q1 (OR: 0.6, 95% CI: 0.4, 0.9). No relationship was noted between Mn and trouble sleeping. CONCLUSIONS: Gender differences exist in the association between Mn and sleep in adults. Q1 group had the poorest sleep outcomes, including higher odds of short sleep duration (in males), late sleep midpoint (in males), and OSA symptoms (in females).


Assuntos
Manganês , Apneia Obstrutiva do Sono , Adulto , Masculino , Feminino , Humanos , Estados Unidos/epidemiologia , Inquéritos Nutricionais , Estudos Transversais , Sono
5.
J Neurochem ; 160(3): 356-375, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34837396

RESUMO

Neurodegeneration with brain iron accumulation (NBIA) is a clinically and genetically heterogeneous group of neurodegenerative diseases characterized by the abnormal accumulation of brain iron and the progressive degeneration of the nervous system. One of the recently identified subtypes of NBIA is ß-propeller protein-associated neurodegeneration (BPAN). BPAN is caused by de novo mutations in the WDR45/WIPI4 (WD repeat domain 45) gene. WDR45 is one of the four mammalian homologs of yeast Atg18, a regulator of autophagy. WDR45 deficiency in BPAN patients and animal models may result in defects in autophagic flux. However, how WDR45 deficiency leads to brain iron overload remains unclear. To elucidate the role of WDR45, we generated a WDR45-knockout (KO) SH-SY5Y neuroblastoma cell line using CRISPR-Cas9-mediated genome editing. Using these cells, we demonstrated that the non-TF (transferrin)-bound iron pathway dominantly mediated the accumulation of iron. Moreover, the loss of WDR45 led to defects in ferritinophagy, a form of autophagy that degrades the iron storage protein ferritin. We showed that impaired ferritinophagy contributes to iron accumulation in WDR45-KO cells. Iron accumulation was also detected in the mitochondria, which was accompanied by impaired mitochondrial respiration, elevated reactive oxygen species, and increased cell death. Thus, our study links WDR45 to specific iron acquisition pathways and ferritinophagy. Cover Image for this issue: https://doi.org/10.1111/jnc.15388.


Assuntos
Autofagia/genética , Proteínas de Transporte/genética , Sobrecarga de Ferro/genética , Doenças Neurodegenerativas/genética , Química Encefálica/genética , Morte Celular , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio , Transferrina/metabolismo
6.
J Immunol ; 204(7): 1708-1713, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122995

RESUMO

Iron has long been established as a critical mediator of T cell development and proliferation. However, the mechanisms by which iron controls CD4 T cell activation and expansion remain poorly understood. In this study, we show that stimulation of CD4 T cells from C57BL/6 mice not only decreases total and labile iron levels but also leads to changes in the expression of iron homeostatic machinery. Additionally, restraining iron availability in vitro severely inhibited CD4 T cell proliferation and cell cycle progression. Although modulating cellular iron levels increased IL-2 production by activated T lymphocytes, CD25 expression and pSTAT5 levels were decreased, indicating that iron is necessary for IL-2R-mediated signaling. We also found that iron deprivation during T cell stimulation negatively impacts mitochondrial function, which can be reversed by iron supplementation. In all, we show that iron contributes to activation-induced T cell expansion by positively regulating IL-2R signaling and mitochondrial function.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/fisiologia , Ferro/imunologia , Mitocôndrias/imunologia , Receptores de Interleucina-2/imunologia , Animais , Feminino , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
7.
FASEB J ; 34(2): 2929-2943, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908045

RESUMO

Diet plays a significant role in the pathogenesis of inflammatory bowel disease (IBD). A recent epidemiological study has shown an inverse relationship between nutritional manganese (Mn) status and IBD patients. Mn is an essential micronutrient required for normal cell function and physiological processes. To date, the roles of Mn in intestinal homeostasis remain unknown and the contribution of Mn to IBD has yet to be explored. Here, we provide evidence that Mn is critical for the maintenance of the intestinal barrier and that Mn deficiency exacerbates dextran sulfate sodium (DSS)-induced colitis in mice. Specifically, when treated with DSS, Mn-deficient mice showed increased morbidity, weight loss, and colon injury, with a concomitant increase in inflammatory cytokine levels and oxidative and DNA damage. Even without DSS treatment, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In contrast, mice fed a Mn-supplemented diet showed slightly increased tolerance to DSS-induced experimental colitis, as judged by the colon length. Despite the well-appreciated roles of intestinal microbiota in driving inflammation in IBD, the gut microbiome composition was not altered by changes in dietary Mn. We conclude that Mn is necessary for proper maintenance of the intestinal barrier and provides protection against DSS-induced colon injury.


Assuntos
Colite , Colo , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Manganês/farmacologia , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Colite/patologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Dano ao DNA , Sulfato de Dextrana/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Oxirredução/efeitos dos fármacos
8.
Environ Res ; 197: 111190, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872646

RESUMO

BACKGROUND: Selenium is an essential trace element that shows beneficial or adverse health effects depending on the dose. Laboratory studies suggest that high selenium may contribute to the development of non-alcoholic fatty liver disease (NAFLD). However, human evidence is limited. We evaluated the associations of serum selenium level with serum alanine aminotransferase (ALT) activity and suspected NAFLD prevalence in U.S. adults. METHODS: We conducted the cross-sectional analysis in 3827 adults aged 20 years and older without viral hepatitis, hemochromatosis, or alcoholic liver disease who participated in the National Health and Nutrition Examination Survey (NHANES) 2011-2012, 2013-2014, and 2015-2016. Serum selenium was measured using inductively coupled plasma dynamic reaction cell mass spectrometry. Suspected NAFLD cases were defined in the presence of serum ALT >30 international units (IU)/L in men and >19 I.U./L in women in the absence of other identifiable causes of liver disease. RESULTS: The median (interquartile range) of serum selenium level was 127.9 (117.9, 139.4) µg/L. Non-linear associations of serum selenium with NAFLD prevalence and serum ALT activity were observed in the generalized additive models with penalized splines. After adjustment for sociodemographic variables, lifestyle factors, body mass index, and NHANES survey cycles, positive associations were found at > ~130 µg/L serum selenium with both NAFLD and ALT, whereas the associations were flattened at < ~130 µg/L. CONCLUSIONS: Our findings provide evidence of non-linear associations of serum selenium with ALT activity and NAFLD prevalence. In particular, positive associations were found above serum selenium level of 130 µg/L, whereas no association was observed below this value. This finding requires confirmation in future prospective cohort studies.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Selênio , Adulto , Alanina Transaminase , Estudos Transversais , Feminino , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Inquéritos Nutricionais , Prevalência , Estudos Prospectivos
9.
J Nutr ; 150(10): 2635-2645, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32840624

RESUMO

BACKGROUND: Excess sodium intake and insufficient potassium intake are risk factors for hypertension, but there is limited knowledge regarding genetic factors that influence intake. Twenty-hour or half-day urine samples provide robust estimates of sodium and potassium intake, outperforming other measures such as spot urine samples and dietary self-reporting. OBJECTIVE: The aim of this study was to investigate genomic regions associated with sodium intake, potassium intake, and sodium-to-potassium ratio measured from 24-h or half-day urine samples. METHODS: Using samples of European ancestry (mean age: 54.2 y; 52.3% women), we conducted a meta-analysis of genome-wide association studies in 4 cohorts with 24-h or half-day urine samples (n = 6,519), followed by gene-based analysis. Suggestive loci (P < 10-6) were examined in additional European (n = 844), African (n = 1,246), and Asian (n = 2,475) ancestry samples. RESULTS: We found suggestive loci (P < 10-6) for all 3 traits, including 7 for 24-h sodium excretion, 4 for 24-h potassium excretion, and 4 for sodium-to-potassium ratio. The most significant locus was rs77958157 near cocaine- and amphetamine-regulated transcript prepropeptide (CARTPT) , a gene involved in eating behavior and appetite regulation (P = 2.3 × 10-8 with sodium-to-potassium ratio). Two suggestive loci were replicated in additional samples: for sodium excretion, rs12094702 near zinc finger SWIM-type containing 5 (ZSWIM5) was replicated in the Asian ancestry sample reaching Bonferroni-corrected significance (P = 0.007), and for potassium excretion rs34473523 near sodium leak channel (NALCN) was associated at a nominal P value with potassium excretion both in European (P = 0.043) and African (P = 0.043) ancestry cohorts. Gene-based tests identified 1 significant gene for sodium excretion, CDC42 small effector 1 (CDC42SE1), which is associated with blood pressure regulation. CONCLUSIONS: We identified multiple suggestive loci for sodium and potassium intake near genes associated with eating behavior, nervous system development and function, and blood pressure regulation in individuals of European ancestry. Further research is needed to replicate these findings and to provide insight into the underlying genetic mechanisms by which these genomic regions influence sodium and potassium intake.


Assuntos
Comportamento Alimentar , Estudo de Associação Genômica Ampla , Potássio na Dieta/administração & dosagem , Sódio na Dieta/administração & dosagem , População Branca/genética , Adulto , Idoso , Dieta , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Potássio/metabolismo , Potássio/urina , Sódio/metabolismo , Sódio/urina
10.
FASEB J ; 33(2): 2228-2240, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30247984

RESUMO

Hemochromatosis is a frequent genetic disorder, characterized by the accumulation of excess iron across tissues. Mutations in the FPN1 gene, encoding a cell surface iron exporter [ferroportin (Fpn)], are responsible for hemochromatosis type 4, also known as ferroportin disease. Recently, Fpn has been implicated in the regulation of manganese (Mn), another essential nutrient required for numerous cellular enzymes. However, the roles of Fpn in Mn regulation remain ill-defined, and the impact of disease mutations on cellular Mn levels is unknown. Here, we provide evidence that Fpn can export Mn from cells into extracellular space. Fpn seems to play protective roles in Mn-induced cellular toxicity and oxidative stress. Finally, disease mutations interfere with the role of Fpn in controlling Mn levels as well as the stability of Fpn. These results define the function of Fpn as an exporter of both iron and Mn and highlight the potential involvement of Mn dysregulation in ferroportin disease.-Choi, E.-K., Nguyen, T.-T., Iwase, S., Seo, Y. A. Ferroportin disease mutations influence manganese accumulation and cytotoxicity.


Assuntos
Proteínas de Transporte de Cátions/genética , Sobrevivência Celular , Manganês/metabolismo , Mutação , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA