Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phys Chem Chem Phys ; 22(14): 7597-7605, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32226986

RESUMO

The long stagnation of the photo-conversion efficiency of kesterites below 13% is a source of frustration in the scientific community. In this study, we investigated the effects of sodium on the passivation of grain boundaries and defects in Cu2ZnSnSe4 (CZTSe) grown on a soda-lime glass (SLG) and borosilicate (BS) glass. Because BS glass does not inherently contain sodium, we placed a thin layer of NaF between CZTSe and Mo. The composition of the samples is Cu-poor and Zn-rich. The distribution of sodium and its contributions to phase formation and defects were examined by cross-sectional energy-dispersive X-ray profiling, Raman scattering spectroscopy and imaging, surface potential and photoluminescence. From the experimental results, it can be strongly claimed that sodium ions segregate predominantly near the grain boundaries and reduce CuZn-related defects. These local surface imaging analyses provided the exact locations of the secondary phases. In particular, the photo-assisted scanning probe method enabled us to observe the changes in the optoelectrical properties of the thin films and the carrier behavior within the materials. Further studies with distinct alkali ions and optimal processing conditions will pave a way to improve the performance of kesterite solar cells.

2.
Small ; 15(38): e1901793, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31379110

RESUMO

Band-like transport behavior of H-doped transition metal dichalcogenide (TMD) channels in field effect transistors (FET) is studied by conducting low-temperature electrical measurements, where MoTe2 , WSe2 , and MoS2 are chosen for channels. Doped with H atoms through atomic layer deposition, those channels show strong n-type conduction and their mobility increases without losing on-state current as the measurement temperature decreases. In contrast, the mobility of unintentionally (naturally) doped TMD FETs always drops at low temperatures whether they are p- or n-type. Density functional theory calculations show that H-doped MoTe2 , WSe2 , and MoS2 have Fermi levels above conduction band edge. It is thus concluded that the charge transport behavior in H-doped TMD channels is metallic showing band-like transport rather than thermal hopping. These results indicate that H-doped TMD FETs are practically useful even at low-temperature ranges.

3.
Nanotechnology ; 30(38): 384001, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31181554

RESUMO

High quality gallium sulfide II (GaS) and gallium sulfide III ([Formula: see text]) thin films on [Formula: see text]/Si substrates were simultaneously grown by using physical vapor deposition with GaS powder as a single precursor. By controlling the substrate temperature, we can selectively grow either GaS or Ga2S3 thin films on SiO2/Si substrates. Relatively high and low substrate temperature conditions resulted in Ga2S3 and GaS thin films, respectively. The synthesized thin films were characterized by x-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy, and x-ray photoelectron spectroscopy analyses.

4.
Curr Microbiol ; 70(3): 369-73, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25398323

RESUMO

The biofilm-dependent modulation gene (bdm) has recently been shown to play a role in osmotic-induced formation of biofilm in Escherichia coli. In this study, we demonstrated that deletion of bdm results in down-regulation of flagella biosynthesis genes and, consequently, a defect in E. coli motility. In addition, we employed atomic force microscopy to confirm the absence of flagella-like structures on the surface of bdm-null cells. These findings indicate that bdm plays a key role in regulatory pathway for the formation of flagella.


Assuntos
Biofilmes , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flagelos/genética , Flagelos/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , RNA Mensageiro/genética
5.
Nanotechnology ; 25(2): 025705, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24334621

RESUMO

Vertically grown single-walled carbon nanotube (V-SWCNT) forests, synthesized by water-assisted plasma-enhanced chemical vapor deposition, were studied using polarized micro-Raman spectroscopy. Among three different sections (root, center and end) along the vertical growth direction, the degree of V-SWCNT alignment was highest in the center section. Raman frequency red-shifts up to 7 and 13 cm(-1), for RBM and G-band, respectively, were observed in the center section, with respect to the Raman frequencies measured in the root and the end sections. Raman frequency downshift and concurrent linewidth broadening of the G-band, revealing a localized strain, were also observed in the center section. The existence of a localized strain in the center section of the V-SWCNT was further confirmed by observing a strong polarization anisotropy of up to 8 cm(-1) in the G-band Raman frequency for different polarized Raman scattering configurations at the same probed spot.

6.
ACS Nano ; 17(3): 2629-2638, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688595

RESUMO

Vertical type II van der Waals heterobilayers of transition metal dichalcogenides (TMDs) have attracted wide attention due to their distinctive features mostly arising from the emergence of intriguing electronic structures that include moiré-related phenomena. Owing to strong spin-orbit coupling under a noncentrosymmetric environment, TMD heterobilayers host nonequivalent +K and -K valleys of contrasting Berry curvatures, which can be optically controlled by the helicity of optical excitation. The corresponding valley selection rules are well established by not only intralayer excitons but also interlayer excitons. Quite intriguingly, here, we experimentally demonstrate that unusual valley switching can be achieved using the lowest-lying intralayer excitons in H-type heterobilayer WS2/MoS2 prepared by one-step growth. This TMD combination provides an ideal case for interlayer coupling with an almost perfect lattice match, thereby also in the momentum space between +K and -K valleys in the H-type heterostructure. The underlying valley-switching mechanism can be understood by bright-to-dark conversion of initially created electrons in the valley of WS2, followed by interlayer charge transfer to the opposite valley in MoS2. Our suggested model is also confirmed by the absence of valley switching when the lowest-lying excitons in MoS2 are directly generated in the heterobilayer. In contrast to the H-type case, we show that no valley switching is observed from R-type heterobilayers prepared by the same method, where interlayer charge transfer does not occur between the opposite valleys. We compare the case with the series of valley polarization data from other heterobilayer combinations obtained under different excitation energies and temperatures. Our valley switching mechanism can be utilized for valley manipulation by controlling the excitation photon energy together with the photon helicity in valleytronic devices derived from H-type TMD heterobilayers.

7.
Nat Commun ; 14(1): 5605, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37699895

RESUMO

We investigate the voltage control of magnetism in a van der Waals (vdW) heterostructure device consisting of two distinct vdW materials, the ferromagnetic Fe3-xGeTe2 and the ferroelectric In2Se3. It is observed that gate voltages applied to the Fe3-xGeTe2/In2Se3 heterostructure device modulate the magnetic properties of Fe3-xGeTe2 with significant decrease in coercive field for both positive and negative voltages. Raman spectroscopy on the heterostructure device shows voltage-dependent increase in the in-plane In2Se3 and Fe3-xGeTe2 lattice constants for both voltage polarities. Thus, the voltage-dependent decrease in the Fe3-xGeTe2 coercive field, regardless of the gate voltage polarity, can be attributed to the presence of in-plane tensile strain. This is supported by density functional theory calculations showing tensile-strain-induced reduction of the magnetocrystalline anisotropy, which in turn decreases the coercive field. Our results demonstrate an effective method to realize low-power voltage-controlled vdW spintronic devices utilizing the magnetoelectric effect in vdW ferromagnetic/ferroelectric heterostructures.

8.
Small ; 8(11): 1650-6, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22434722

RESUMO

A photoconductive channel based on hybrid nanostructures comprising carbon nanotubes (CNTs) and CdS nanowires is fabricated by a directed assembly strategy and catalyst-assisted chemical vapor deposition (CVD). The photoconductive channels simultaneously exhibit large photocurrent and fast response speed. Furthermore, it can be easily applied to surfaces that are not flat, such as a glass tube. This is a simple but efficient strategy for various optoelectronic applications.


Assuntos
Compostos de Cádmio/química , Nanoestruturas/química , Nanotubos de Carbono/química , Nanofios/química , Sulfetos/química , Nanotecnologia/métodos , Fotoquímica/métodos
9.
ACS Nano ; 16(2): 3404-3416, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35133142

RESUMO

The Seebeck effect refers to the production of an electric voltage when different temperatures are applied on a conductor, and the corresponding voltage-production efficiency is represented by the Seebeck coefficient. We report a Seebeck effect: thermal generation of driving voltage from the heat flowing in a thin PtSe2/PtSe2 van der Waals homostructure at the interface. We refer to the effect as the interface-induced Seebeck effect. By exploiting this effect by directly attaching multilayered PtSe2 over high-resistance PtSe2 thin films as a hybridized single structure, we obtained the highly challenging in-plane Seebeck coefficient of the PtSe2 films that exhibit extremely high resistances. This direct attachment further enhanced the in-plane thermal Seebeck coefficients of the PtSe2/PtSe2 van der Waals homostructure on sapphire substrates. Consequently, we successfully enhanced the in-plane Seebeck coefficients for the PtSe2 (10 nm)/PtSe2 (2 nm) homostructure approximately 42% compared to that of a pure PtSe2 (10 nm) layer at 300 K. These findings represent a significant achievement in understanding the interface-induced Seebeck effect and provide an effective strategy for promising large-area thermoelectric energy harvesting devices using two-dimensional transition metal dichalcogenide materials, which are ideal thermoelectric platforms with high figures of merit.

10.
Nanoscale Res Lett ; 17(1): 26, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35142901

RESUMO

Transition metal dichalcogenides have attracted renewed interest for use as thermoelectric materials owing to their tunable bandgap, moderate Seebeck coefficient, and low thermal conductivity. However, their thermoelectric parameters such as Seebeck coefficient, electrical conductivity, and thermal conductivity are interdependent, which is a drawback. Therefore, it is necessary to find a way to adjust one of these parameters without affecting the other parameters. In this study, we investigated the effect of helium ion irradiation on MoSe2 thin films with the objective of controlling the Seebeck coefficient and electrical conductivity. At the optimal irradiation dose of 1015 cm-2, we observed multiple enhancements of the power factor resulting from an increase in the electrical conductivity, with slight suppression of the Seebeck coefficient. Raman spectroscopy, X-ray diffraction, and transmission electron microscopy analyses revealed that irradiation-induced selenium vacancies played an important role in changing the thermoelectric properties of MoSe2 thin films. These results suggest that helium ion irradiation is a promising method to significantly improve the thermoelectric properties of two-dimensional transition metal dichalcogenides. Effect of He+ irradiation on thermoelectric properties of MoSe2 thin films.

11.
Nat Commun ; 12(1): 6453, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753923

RESUMO

Anisotropic triangular antiferromagnets can host two primary spin excitations, namely, spinons and triplons. Here, we utilize polarization-resolved Raman spectroscopy to assess the statistics and dynamics of spinons in Ca3ReO5Cl2. We observe a magnetic Raman continuum consisting of one- and two-pair spinon-antispinon excitations as well as triplon excitations. The twofold rotational symmetry of the spinon and triplon excitations are distinct from magnons. The strong thermal evolution of spinon scattering is compatible with the bosonic spinon scenario. The quasilinear spinon hardening with decreasing temperature is envisaged as the ordering of one-dimensional topological defects. This discovery will enable a fundamental understanding of novel phenomena induced by lowering spatial dimensionality in quantum spin systems.

12.
Sci Rep ; 11(1): 21202, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707186

RESUMO

Gallium Telluride (GaTe), a layered material with monoclinic crystal structure, has recently attracted a lot of attention due to its unique physical properties and potential applications for angle-resolved photonics and electronics, where optical anisotropies are important. Despite a few reports on the in-plane anisotropies of GaTe, a comprehensive understanding of them remained unsatisfactory to date. In this work, we investigated thickness-dependent in-plane anisotropies of the 13 Raman-active modes and one Raman-inactive mode of GaTe by using angle-resolved polarized Raman spectroscopy, under both parallel and perpendicular polarization configurations in the spectral range from 20 to 300 cm-1. Raman modes of GaTe revealed distinctly different thickness-dependent anisotropies in parallel polarization configuration while nearly unchanged for the perpendicular configuration. Especially, three Ag modes at 40.2 ([Formula: see text]), 152.5 ([Formula: see text]), and 283.8 ([Formula: see text]) cm-1 exhibited an evident variation in anisotropic behavior as decreasing thickness down to 9 nm. The observed anisotropies were thoroughly explained by adopting the calculated interference effect and the semiclassical complex Raman tensor analysis.

13.
Sci Rep ; 11(1): 7843, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846520

RESUMO

Van der Waals (vdW) heterostructures, consisting of a variety of low-dimensional materials, have great potential use in the design of a wide range of functional devices thanks to their atomically thin body and strong electrostatic tunability. Here, we demonstrate multi-functional indium selenide (InSe)/black phosphorous (BP) heterostructures encapsulated by hexagonal boron nitride. At a positive drain bias (VD), applied on the BP while the InSe is grounded, our heterostructures show an intermediate gate voltage (VBG) regime where the current hardly changes, working as a ternary transistor. By contrast, at a negative VD, the device shows strong negative differential transconductance characteristics; the peak current increases up to ~5 µA and the peak-to-valley current ratio reaches 1600 at VD = -2 V. Four-terminal measurements were performed on each layer, allowing us to separate the contributions of contact resistances and channel resistance. Moreover, multiple devices with different device structures and contacts were investigated, providing insight into the operation principle and performance optimization. We systematically investigated the influence of contact resistances, heterojunction resistance, channel resistance, and the thickness of BP on the detailed operational characteristics at different VD and VBG regimes.

14.
ACS Appl Mater Interfaces ; 13(48): 57588-57596, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34797625

RESUMO

Noncentrosymmetric transition-metal dichalcogenides, particularly their 3R polymorphs, provide a robust setting for valleytronics. Here, we report on the selective growth of monolayers and bilayers of MoS2, which were acquired from two closely but differently oriented substrates in a chemical vapor deposition reactor. It turns out that as-grown bilayers are predominantly 3R-type, not more common 2H-type, as verified by microscopic and spectroscopic characterization. As expected, the 3R bilayer showed a significantly higher valley polarization compared with the centrosymmetric 2H bilayer, which undergoes efficient interlayer scattering across contrasting valleys because of their vertical alignment of the K and K' points in momentum space. Interestingly, the 3R bilayer showed even higher valley polarization compared with the monolayer counterpart. Moreover, the 3R bilayer reasonably maintained its valley efficiency over a very wide range of excitation power density from ∼0.16 kW/cm2 to ∼0.16 MW/cm2 at both low and room temperatures. These observations are rather surprising because valley dephasing could be more efficient in the bilayer via both interlayer and intralayer scatterings, whereas only intralayer scattering is allowed in the monolayer. The improved valley polarization of the 3R bilayer can be attributed to its indirect-gap nature, where valley-polarized excitons can relax into the valley-insensitive band edge, which otherwise scatter into the contrasting valley to effectively cancel out the initial valley polarization. Our results provide a facile route for the growth of 3R-MoS2 bilayers that could be utilized as a platform for advancing valleytronics.

15.
ACS Appl Mater Interfaces ; 13(37): 45097-45104, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34496563

RESUMO

A recent study found that magnetization curves for Y3Fe5O12 (YIG) slab and thick films (>20 µm thick) differed from bulk system curves by their longitudinal spin Seebeck effect in a Pt/YIG bilayer system. The deviation was due to intrinsic YIG surface magnetic anisotropy, which is difficult to adopt extrinsic surface magnetic anisotropy even when in contact with other materials on the YIG surface. This study experimentally demonstrates evidence for extrinsic YIG surface magnetic anisotropy when in contact with a diamagnetic graphene interlayer by observing the spin Seebeck effect, directly proving intrinsic YIG surface magnetic anisotropy interruption. We show the Pt/YIG bilayer system graphene interlayer role using large area single and multilayered graphenes using the longitudinal spin Seebeck effect at room temperature, and address the presence of surface magnetic anisotropy due to magnetic proximity between graphene and YIG layer. These findings suggest a promising route to understand new physics of spin Seebeck effect in spin transport.

16.
Nanotechnology ; 21(5): 055504, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20032552

RESUMO

Nanoscale sensors based on single-walled carbon nanotube (SWNT) networks have been considered impractical due to several fundamental limitations such as a poor sensitivity and small signal-to-noise ratio. Herein, we present a strategy to overcome these fundamental problems and build highly-sensitive low-noise nanoscale sensors simply by controlling the structure of the SWNT networks. In this strategy, we prepared nanoscale width channels based on aligned SWNT networks using a directed assembly strategy. Significantly, the aligned network-based sensors with narrower channels exhibited even better signal-to-noise ratio than those with wider channels, which is opposite to conventional random network-based sensors. As a proof of concept, we demonstrated 100 nm scale low-noise sensors to detect mercury ions with the detection limit of approximately 1 pM, which is superior to any state-of-the-art portable detection system and is below the allowable limit of mercury ions in drinking water set by most government environmental protection agencies. This is the first demonstration of 100 nm scale low-noise sensors based on SWNT networks. Considering the increased interests in high-density sensor arrays for healthcare and environmental protection, our strategy should have a significant impact on various industrial applications.

17.
ACS Appl Mater Interfaces ; 12(2): 2490-2496, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31840505

RESUMO

Steam generation by eco-friendly solar energy has immense potential in terms of low-cost power generation, desalination, sanitization, and wastewater treatment. Herein, highly efficient steam generation in a bilayer solar steam generator (BSSG) is demonstrated, which is comprised of a large-area SnSe-SnSe2 layer deposited on a glassy carbon foam (CF). Both CF and SnSe-SnSe2 possess high photothermal conversion capabilities and low thermal conductivities. The combined bilayer system cumulatively converts input solar light into heat through phonon-assisted transitions in the indirect band gap SnSe-SnSe2 layer, together with trapping of sunlight via multiple scattering due to the porous morphology of the CF. This synergistic effect leads to efficient broadband solar absorption. Moreover, the low out-of-plane thermal conductivities of SnSe-SnSe2 and CF confine the generated heat at the evaporation surface, resulting in a significant reduction of heat losses. Additionally, the hydrophilic nature of the acid-treated CF offers effective water transport via capillary action, required for efficient solar steam generation in a floating form. A high evaporation rate (1.28 kg m-2 h-1) and efficiency (84.1%) are acquired under 1 sun irradiation. The BSSG system shows high recyclability, stability, and durability under repeated steam-generation cycles, which renders its practical device applications possible.

18.
Nanotechnology ; 19(13): 135305, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19636144

RESUMO

We present a simple but efficient method to prepare carbon nanotube (CNT)-based flexible devices embedded in polymer substrates. In this strategy, a methyl-terminated self-assembled monolayer is first coated on a solid substrate as a release layer, and CNT-network devices fabricated on it are directly transferred into a poly(dimethylsiloxane) (PDMS) mold, resulting in flexible CNT-network devices embedded in PDMS. The embedded circuits exhibit stable operation even after significant bending. We also propose Raman spectroscopy as a powerful tool to remotely characterize the CNT-network device structures covered by a polymer layer. As a proof of concept, we demonstrate DNA sensors utilizing the fabricated CNT-network devices.

19.
J Microbiol Biotechnol ; 18(8): 1353-6, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18756093

RESUMO

RNase E (Rne) plays a major role in the decay and processing of numerous RNAs in E. coli, and protein inhibitors of RNase E, RraA and RraB, have recently been discovered. Here, we report that coexpression of RraA or RraB reduces the ribonucleolytic activity in rne-deleted E. coli cells overproducing RNase ES, a Streptomyces coelicolor functional ortholog of RNase E, and consequently rescues these cells from growth arrest. These findings suggest that the regulators of ribonuclease activity have a conserved intrinsic property that effectively acts on an RNase E-like enzyme found in a distantly related bacterial species.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Escherichia coli/biossíntese , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Western Blotting , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/deficiência , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
ACS Nano ; 11(9): 8822-8829, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28825796

RESUMO

The covalently bonded in-plane heterostructure (HS) of monolayer transition-metal dichalcogenides (TMDCs) possesses huge potential for high-speed electronic devices in terms of valleytronics. In this study, high-quality monolayer MoSe2-WSe2 lateral HSs are grown by pulsed-laser-deposition-assisted selenization method. The sharp interface of the lateral HS is verified by morphological and optical characterizations. Intriguingly, photoluminescence spectra acquired from the interface show rather clear signatures of pristine MoSe2 and WSe2 with no intermediate energy peak related to intralayer excitonic matter or formation of MoxW(1-x)Se2 alloys, thereby confirming the sharp interface. Furthermore, the discrete nature of laterally attached TMDC monolayers, each with doubly degenerated but nonequivalent energy valleys marked by (KM, K'M) for MoSe2 and (KW, K'W) for WSe2 in k space, allows simultaneous control of the four valleys within the excitation area without any crosstalk effect over the interface. As an example, KM and KW valleys or K'M and K'W valleys are simultaneously polarized by controlling the helicity of circularly polarized optical pumping, where the maximum degree of polarization is achieved at their respective band edges. The current work provides the growth mechanism of laterally sharp HSs and highlights their potential use in valleytronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA