Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(6): e2305581, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37775952

RESUMO

The rapid development of engineered nanomaterials (ENMs) causes humans to become increasingly exposed to them. Therefore, a better understanding of the health impact of ENMs is highly demanded. Considering the 3Rs (Replacement, Reduction, and Refinement) principle, in vitro and computational methods are excellent alternatives for testing on animals. Among computational methods, nano-quantitative structure-activity relationship (nano-QSAR), which links the physicochemical and structural properties of EMNs with biological activities, is one of the leading method. The nature of toxicological experiments has evolved over the last decades; currently, one experiment can provide thousands of measurements of the organism's functioning at the molecular level. At the same time, the capacity of the in vitro systems to mimic the human organism is also improving significantly. Hence, the authors would like to discuss whether the nano-QSAR approach follows modern toxicological studies and takes full advantage of the opportunities offered by modern toxicological platforms. Challenges and possibilities for improving data integration are underlined narratively, including the need for a consensus built between the in vitro and the QSAR domains.


Assuntos
Nanoestruturas , Relação Quantitativa Estrutura-Atividade , Humanos , Animais , Nanoestruturas/toxicidade , Nanoestruturas/química
2.
Ecotoxicol Environ Saf ; 210: 111775, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421722

RESUMO

The aim of the present study was the assessment of the sub-chronic effects of silver (AgNPs) and gold nanoparticles (AuNPs) of 40 nm primary size either stabilised with citrate (CIT) or coated with polyethylene glycol (PEG) on the freshwater invertebrate Gammarus fossarum. Silver nitrate (AgNO3) was used as a positive control in order to study the contribution of silver ions potentially released from AgNPs on the observed effects. A multibiomarker approach was used to assess the long-term effects of AgNPs and AuNPs 40 nm on molecular, cellular, physiological and behavioural responses of G. fossarum. Specimen of G. fossarum were exposed for 15 days to 0.5 and 5 µgL-1 of CIT and PEG AgNPs and AuNPs 40 nm in the presence of food. A significant uptake of both Ag and Au was observed in exposed animals but was under the toxic threshold leading to mortality of G. fossarum. Silver nanoparticles (CIT-AgNPs and PEG-AgNPs 40 nm) led to an up-regulation of Na+K+ATPase gene expression. An up-regulation of Catalse and Chitinase gene expressions due to exposure to PEG-AgNPs 40 nm was also observed. Gold nanoparticles (CIT and PEG-AuNPs 40 nm) led to an increase of CuZnSOD gene expression. Furthermore, both AgNPs and AuNPs led to a more developed digestive lysosomal system indicating a general stress response in G. fossarum. Both AgNPs and AuNPs 40 nm significantly affected locomotor activity of G. fossarum while no effects were observed on haemolymphatic ions and ventilation.


Assuntos
Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Ácido Cítrico/toxicidade , Sistema Digestório/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Polietilenoglicóis/toxicidade
3.
Small ; 16(36): e2003303, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32700469

RESUMO

Nanotechnologies have reached maturity and market penetration that require nano-specific changes in legislation and harmonization among legislation domains, such as the amendments to REACH for nanomaterials (NMs) which came into force in 2020. Thus, an assessment of the components and regulatory boundaries of NMs risk governance is timely, alongside related methods and tools, as part of the global efforts to optimise nanosafety and integrate it into product design processes, via Safe(r)-by-Design (SbD) concepts. This paper provides an overview of the state-of-the-art regarding risk governance of NMs and lays out the theoretical basis for the development and implementation of an effective, trustworthy and transparent risk governance framework for NMs. The proposed framework enables continuous integration of the evolving state of the science, leverages best practice from contiguous disciplines and facilitates responsive re-thinking of nanosafety governance to meet future needs. To achieve and operationalise such framework, a science-based Risk Governance Council (RGC) for NMs is being developed. The framework will provide a toolkit for independent NMs' risk governance and integrates needs and views of stakeholders. An extension of this framework to relevant advanced materials and emerging technologies is also envisaged, in view of future foundations of risk research in Europe and globally.


Assuntos
Nanoestruturas , Nanotecnologia , Medição de Risco , Nanoestruturas/toxicidade , Nanotecnologia/normas , Nanotecnologia/tendências , Medição de Risco/normas
4.
Part Fibre Toxicol ; 17(1): 13, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316988

RESUMO

BACKGROUND: Silica nanoparticles (SiNPs) are among the most widely manufactured and used nanoparticles. Concerns about potential health effects of SiNPs have therefore risen. Using a 3D tri-culture model of the alveolar lung barrier we examined effects of exposure to SiNPs (Si10) and crystalline silica (quartz; Min-U-Sil) in the apical compartment consisting of human alveolar epithelial A549 cells and THP-1-derived macrophages, as well as in the basolateral compartment with Ea.hy926 endothelial cells. Inflammation-related responses were measured by ELISA and gene expression. RESULTS: Exposure to both Si10 and Min-U-Sil induced gene expression and release of CXCL8, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-1ß (IL-1ß) in a concentration-dependent manner. Cytokine/chemokine expression and protein levels were highest in the apical compartment. Si10 and Min-U-Sil also induced expression of adhesion molecules ICAM-1 and E-selectin in the apical compartment. In the basolateral endothelial compartment we observed marked, but postponed effects on expression of all these genes, but only at the highest particle concentrations. Geneexpressions of heme oxygenase-1 (HO-1) and the metalloproteases (MMP-1 and MMP-9) were less affected. The IL-1 receptor antagonist (IL-1RA), markedly reduced effects of Si10 and Min-U-Sil exposures on gene expression of cytokines and adhesion molecules, as well as cytokine-release in both compartments. CONCLUSIONS: Si10 and Min-U-Sil induced gene expression and release of pro-inflammatory cytokines/adhesion molecules at both the epithelial/macrophage and endothelial side of a 3D tri-culture. Responses in the basolateral endothelial cells were only induced at high concentrations, and seemed to be mediated by IL-1α/ß released from the apical epithelial cells and macrophages.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Células A549 , Células Epiteliais Alveolares/imunologia , Técnicas de Cocultura , Citocinas/genética , Relação Dose-Resposta a Droga , Expressão Gênica/imunologia , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos Alveolares/imunologia , Modelos Biológicos , Tamanho da Partícula , Quartzo/toxicidade , Células THP-1
5.
Part Fibre Toxicol ; 16(1): 14, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940208

RESUMO

BACKGROUND: The present study aimed to evaluate the potential differences in the biological effects of two types of spherical silver particles of 20 and 200 nm (Ag20 and Ag200), and of PVP-coated silver nanowires (AgNWs) with a diameter of 50 nm and length up to 50 µm, using a complex 3D model representative for the alveolar barrier cultured at air-liquid interface (ALI). The alveolar model was exposed to 0.05, 0.5 and 5 µg/cm2 of test compounds at ALI using a state-of-the-art exposure system (Vitrocell™Cloud System). Endpoints related to the oxidative stress induction, anti-oxidant defence mechanisms, pro-inflammatory responses and cellular death were selected to evaluate the biocompatibility of silver particles and nanowires (AgNMs) and to further ascribe particular biological effects to the different morphologic properties between the three types of AgNMs evaluated. RESULTS: Significant cytotoxic effect was observed for all three types of AgNMs at the highest tested doses. The increased mRNA levels of the pro-apoptotic gene CASP7 suggests that apoptosis may occur after exposure to AgNWs. All three types of AgNMs increased the mRNA level of the anti-oxidant enzyme HMOX-1 and of the metal-binding anti-oxidant metallothioneins (MTs), with AgNWs being the most potent inducer. Even though all types of AgNMs induced the nuclear translocation of NF-kB, only AgNWs increased the mRNA level of pro-inflammatory mediators. The pro-inflammatory response elicited by AgNWs was further confirmed by the increased secretion of the 10 evaluated interleukins. CONCLUSION: In the current study, we demonstrated that the direct exposure of a complex tetra-culture alveolar model to different types of AgNMs at ALI induces shape- and size-specific biological responses. From the three AgNMs tested, AgNWs were the most potent in inducing biological alterations. Starting from 50 ng/cm2, a dose representative for an acute exposure in a high exposure occupational setting, AgNWs induced prominent changes indicative for a pro-inflammatory response. Even though the acute responses towards a dose representative for a full-lifetime exposure were also evaluated, chronic exposure scenarios at low dose are still unquestionably needed to reveal the human health impact of AgNMs during realistic conditions.


Assuntos
Barreira Alveolocapilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Nanofios/toxicidade , Alvéolos Pulmonares/efeitos dos fármacos , Prata/toxicidade , Poluentes Atmosféricos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Relação Dose-Resposta a Droga , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Tamanho da Partícula , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/metabolismo
6.
Arch Toxicol ; 92(2): 803-822, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29038838

RESUMO

Respiratory sensitization as a consequence of exposure to chemical products has increased over the last decades, leading to an increase of morbidity. The increased use of synthetic compounds resulted in an exponential growth of substances to which we are potentially exposed on a daily basis. Some of them are known to induce respiratory sensitization, meaning that they can trigger the development of allergies. In the past, animal studies provided useful results for the understanding of mechanisms involved in the development of respiratory allergies. However, the mechanistic understanding of the involved cellular effects is still limited. Currently, no in vitro or in vivo models are validated to identify chemical respiratory sensitizers. Nonetheless, chemical respiratory sensitizers elicit a positive response in validated assays for skin sensitization. In this review, we will discuss how these assays could be used for respiratory sensitization and if necessary, what can be learnt from these assays to develop a model to assess the respiratory sensitizing potential of chemicals. In the last decades, much work has been done to study the respiratory toxicity of inhaled compounds especially in developing in vitro assays grown at the air-liquid interface. We will discuss how possibly the tests currently used to investigate general particle toxicity could be transformed to investigate respiratory sensitization. In the present review, we describe the most known mechanism involved in the sensitization process and the experimental in vivo and alternative in vitro models, which are currently available and how to adapt and improve existing models to study respiratory sensitization.


Assuntos
Hipersensibilidade Respiratória/induzido quimicamente , Testes de Toxicidade/métodos , Animais , Bioensaio , Células Cultivadas , Cobaias , Humanos , Sistema Imunitário , Exposição por Inalação , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Testes Cutâneos
7.
Part Fibre Toxicol ; 14(1): 7, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28264691

RESUMO

BACKGROUND: During the last 250 years, the level of exposure to combustion-derived particles raised dramatically in western countries, leading to increased particle loads in the ambient air. Among the environmental particles, diesel exhaust particulate matter (DEPM) plays a special role because of its omnipresence and reported effects on human health. During recent years, a possible link between air pollution and the progression of atherosclerosis is recognized. A central effect of DEPM is their impact on the endothelium, especially of the alveolar barrier. In the present study, a complex 3D tetraculture model of the alveolar barrier was used in a dose-controlled exposure scenario with realistic doses of DEPM to study the response of endothelial cells. RESULTS: Tetracultures were exposed to different doses of DEPM (SRM2975) at the air-liquid-interface. DEPM exposure did not lead to the mRNA expression of relevant markers for endothelial inflammation such as ICAM-1 or E-selectin. In addition, we observed neither a significant change in the expression levels of the genes relevant for antioxidant defense, such as HMOX1 or SOD1, nor the release of pro-inflammatory second messengers, such as IL-6 or IL-8. However, DEPM exposure led to strong nuclear translocation of the transcription factor Nrf2 and significantly altered expression of CYP1A1 mRNA in the endothelial cells of the tetraculture. CONCLUSION: In the present study, we demonstrated the use of a complex 3D tetraculture system together with a state-of-the-art aerosol exposure equipment to study the effects of in vivo relevant doses of DEPM on endothelial cells in vitro. To the best of our knowledge, this study is the first that focuses on indirect effects of DEPM on endothelial cells of the alveolar barrier in vitro. Exposure to DEPM led to significant activation and nuclear translocation of the transcription factor Nrf2 in endothelial cells. The considerably low doses of DEPM had a low but measurable effect, which is in line with recent data from in vivo studies.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Epiteliais Alveolares/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Células A549 , Células Epiteliais Alveolares/metabolismo , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos
8.
Part Fibre Toxicol ; 13: 9, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888332

RESUMO

BACKGROUND: The increased incorporation of silver nanoparticles (Ag NPs) into consumer products makes the characterization of potential risk for humans and other organisms essential. The oral route is an important uptake route for NPs, therefore the study of the gastrointestinal tract in respect to NP uptake and toxicity is very timely. The aim of the present study was to evaluate the effects of Ag NPs and ions on a Caco-2/TC7:HT29-MTX intestinal co-culture model with mucus secretion, which constitutes an important protective barrier to exogenous agents in vivo and may strongly influence particle uptake. METHODS: The presence of the mucus layer was confirmed with staining techniques (alcian blue and toluidine blue). Mono and co-cultures of Caco-2/TC7 and HT29-MTX cells were exposed to Ag NPs (Ag 20 and 200 nm) and AgNO3 and viability (alamar blue), ROS induction (DCFH-DA assay) and IL-8 release (ELISA) were measured. The particle agglomeration in the media was evaluated with DLS and the ion release with ultrafiltration and ICP-MS. The effects of the Ag NPs and AgNO3 on cells in co-culture were studied at a proteome level with two-dimensional difference in gel electrophoresis (2D-DIGE) followed by Matrix Assisted Laser Desorption Ionization - Time Of Flight/ Time Of Flight (MALDI-TOF/TOF) mass spectrometry (MS). Intracellular localization was assessed with NanoSIMS and TEM. RESULTS: The presence of mucus layer led to protection against ROS and decrease in IL-8 release. Both Ag 20 and 200 nm NPs were taken up by the cells and Ag NPs 20 nm were mainly localized in organelles with high sulfur content. A dose- and size-dependent increase in IL-8 release was observed with a lack of cytotoxicity and oxidative stress. Sixty one differentially abundant proteins were identified involved in cytoskeleton arrangement and cell cycle, oxidative stress, apoptosis, metabolism/detoxification and stress. CONCLUSIONS: The presence of mucus layer had an impact on modulating the induced toxicity of NPs. NP-specific effects were observed for uptake, pro-inflammatory response and changes at the proteome level. The low level of overlap between differentially abundant proteins observed in both Ag NPs and AgNO3 treated co-culture suggests size-dependent responses that cannot only be attributed to soluble Ag.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Muco/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Nitrato de Prata/toxicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Environ Toxicol Pharmacol ; 106: 104353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163529

RESUMO

A substantial increase in engineered nanoparticles in consumer products has been observed, heightening human and environmental exposure. Inhalation represents the primary route of human exposure, necessitating a focus on lung toxicity studies. However, to avoid ethical concerns the use of in vitro models is an efficient alternative to in vivo models. This study utilized an in vitro human alveolar barrier model at air-liquid-interface with four cell lines, for evaluating the biological effects of different gold nanoparticles. Exposure to PEGylated gold nanospheres, nanorods, and nanostars did not significantly impact viability after 24 h, yet all AuNPs induced cytotoxicity in the form of membrane integrity impairment. Gold quantification revealed cellular uptake and transport. Transcriptomic analysis identified gene expression changes, particularly related to the enhancement of immune cells. Despite limited impact, distinct effects were observed, emphasizing the influence of nanoparticles physicochemical parameters while demonstrating the model's efficacy in investigating particle biological effects.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/toxicidade , Ouro/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Linhagem Celular
10.
NanoImpact ; 35: 100513, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821170

RESUMO

The past few decades of managing the uncertain risks associated with nanomaterials have provided valuable insights (knowledge gaps, tools, methods, etc.) that are equally important to promote safe and sustainable development and use of advanced materials. Based on these insights, the current paper proposes several actions to optimize the risk and sustainability governance of advanced materials. We emphasise the importance of establishing a European approach for risk and sustainability governance of advanced materials as soon as possible to keep up with the pace of innovation and to manage uncertainty among regulators, industry, SMEs and the public, regarding potential risks and impacts of advanced materials. Coordination of safe and sustainable advanced material research efforts, and data management according to the Findable, Accessible, Interoperable and Reusable (FAIR) principles will enhance the generation of regulatory-relevant knowledge. This knowledge is crucial to identify whether current regulatory standardised and harmonised test methods are adequate to assess advanced materials. At the same time, there is urgent need for responsible innovation beyond regulatory compliance which can be promoted through the Safe and Sustainable Innovation Approach. that combines the Safe and Sustainable by Design concept with Regulatory Preparedness, supported by a trusted environment. We further recommend consolidating all efforts and networks related to the risk and sustainability governance of advanced materials in a single, easy-to-use digital portal. Given the anticipated complexity and tremendous efforts required, we identified the need of establishing an organisational structure dedicated to aligning the fast technological developments in advanced materials with proper risk and sustainability governance. Involvement of multiple stakeholders in a trusted environment ensures a coordinated effort towards the safe and sustainable development, production, and use of advanced materials. The existing infrastructures and network of experts involved in the governance of nanomaterials would form a solid foundation for such an organisational structure.

11.
Nat Protoc ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755447

RESUMO

Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials.

12.
Biochim Biophys Acta ; 1824(6): 833-41, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22516319

RESUMO

Several man-made organic pollutants including polychlorinated biphenyls (PCBs) and several pesticides may exhibit endocrine disrupting (ED) properties. These ED molecules can be comparatively persistent in the environment, and have shown to perturb hormonal activity and several physiological functions. The objective of this investigation was to study the impact of PCB 153 and atrazine on human MCF-7 cells, and to search for marker proteins of their exposure. Cells were exposed to environmentally high but relevant concentrations of atrazine (200ppb), PCB 153 (500ppb), 17-ß estradiol (positive control, 10nM) and DMSO (0.1%, negative control) for t=36h (n=3 replicates/exposure group). Proteins from cell membrane and cytosol were isolated, and studied by 2D-DiGE. Differentially regulated proteins were trypsin-digested and identified by MALDI-ToF-ToF and NCBInr database. A total of 36 differentially regulated proteins (>|1.5| fold change, P<0.05) were identified in the membrane fraction and 22 in the cytosol, and were mainly involved in cell structure and in stress response, but also in xenobiotic metabolism. 67% (membrane) and 50% (cytosol) of differentially regulated proteins were more abundant following atrazine exposure whereas nearly 100% (membrane) and 45% (cytosol) were less abundant following PCB 153 exposure. Western blots of selected proteins (HSBP1, FKBP4, STMN1) confirmed 2D-DiGE results. This study emphasizes the numerous potential effects that ED compounds could have on exposed humans.


Assuntos
Atrazina/farmacologia , Citosol/metabolismo , Disruptores Endócrinos/farmacologia , Bifenilos Policlorados/farmacologia , Proteoma/metabolismo , Estradiol/farmacologia , Estradiol/fisiologia , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Células MCF-7 , Proteínas de Membrana/metabolismo , Chaperonas Moleculares , Estatmina/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
13.
Electrophoresis ; 34(4): 505-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23172383

RESUMO

Fusarium graminearum is widely studied as a model for toxin production among plant pathogenic fungi. A 2D DIGE reference map for the nivalenol-producing strain 453 was established. Based on a whole protein extract, all reproducible spots were systematically picked and analyzed by MALDI-TOF/TOF, leading to the identification of 1102 protein species. The obtained map contributes to the annotation of the genome by identifying previously nondescribed hypothetical proteins and will serve as a reference for future studies aiming at deciphering F. graminearum biology and chemotype diversity.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Fusarium/metabolismo , Proteoma/análise , Proteoma/química , Tricotecenos/biossíntese , Bases de Dados de Proteínas , Fusarium/química , Fusarium/genética , Reprodutibilidade dos Testes
14.
Part Fibre Toxicol ; 10: 31, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23890538

RESUMO

BACKGROUND: Exposure to fine and ultra-fine ambient particles is still a problem of concern in many industrialised parts of the world and the intensified use of nanotechnology may further increase exposure to small particles. Complex in vitro coculture systems may be valuable tools to study particle-induced processes and to extrapolate effects of particles on the lung. A system consisting of four different human cell lines which mimics the cell response of the alveolar surface in vitro was developed to study native aerosol exposure (Vitrocell™ chamber). The system is composed of an alveolar type-II cell line (A549), differentiated macrophage-like cells (THP-1), mast cells (HMC-1) and endothelial cells (EA.hy 926), seeded in a 3D-orientation on a microporous membrane. RESULTS: The spatial distribution of the cells in the tetraculture was analysed by confocal laser scanning microscopy (CLSM), showing a confluent layer of endothelial and epithelial cells on both sides of the transwell. Macrophage-like cells and mast cells can be found on top of the epithelial cells. The cells formed colonies under submerged conditions, which disappeared at the ALI. To evaluate the response to oxidative stress, the dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used together with 2,2'-azobis-2-methyl-propanimidamide-dihydrochloride (AAPH) as inducer of oxidative stress. The tetraculture showed less induction of reactive oxygen species (ROS) production after being treated with a positive control compared to the monocultures of EA.hy 926, THP-1 and HMC-1. Submerged cultures showed elevated ROS and IL-8 levels compared to ALI cultures. The Vitrocell™ aerosol exposure system was not significantly influencing the viability. Using this system, cells were exposed to an aerosol of 50 nm SiO2-Rhodamine NPs in PBS. The distribution of the NPs in the tetraculture after exposure was evaluated by CLSM. Fluorescence from internalized particles was detected in CD11b-positive THP-1 cells only. CONCLUSION: The system can be used in conjunction with a native aerosol exposure system and may finally lead to a more realistic judgement regarding the hazard of new compounds and/or new nano-scaled materials in the future. The results for the ROS production and IL-8 secretion suggest that submerged exposure may lead to an overestimation of observed effects.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Material Particulado/toxicidade , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/efeitos dos fármacos , Dióxido de Silício/toxicidade , Aerossóis , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais/metabolismo , Células Epiteliais/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Exposição por Inalação , Interleucina-8/metabolismo , Macrófagos/metabolismo , Mastócitos/metabolismo , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco
15.
NanoImpact ; 31: 100466, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37209722

RESUMO

BACKGROUND: The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes). The lung model was exposed to NMs using the VITROCELL® Cloud12 system at physiologically relevant dose levels. RESULTS: Overall, the results of the 7 participating laboratories are quite similar. After exposing Calu-3 alone and Calu-3 co-cultures with macrophages, no effects of lipopolysaccharide (LPS), quartz (DQ12) or titanium dioxide (TiO2) NM-105 particles on the cell viability and barrier integrity were detected. LPS exposure induced moderate cytokine release in the Calu-3 monoculture, albeit not statistically significant in most labs. In the co-culture models, most laboratories showed that LPS can significantly induce cytokine release (IL-6, IL-8 and TNF-α). The exposure to quartz and TiO2 particles did not induce a statistically significant increase in cytokine release in both cell models probably due to our relatively low deposited doses, which were inspired by in vivo dose levels. The intra- and inter-laboratory comparison study indicated acceptable interlaboratory variation for cell viability/toxicity (WST-1, LDH) and transepithelial electrical resistance, and relatively high inter-laboratory variation for cytokine production. CONCLUSION: The transferability and reproducibility of a lung co-culture model and its exposure to aerosolized particles at the ALI were evaluated and recommendations were provided for performing inter-laboratory comparison studies. Although the results are promising, optimizations of the lung model (including more sensitive read-outs) and/or selection of higher deposited doses are needed to enhance its predictive value before it may be taken further towards a possible OECD guideline.


Assuntos
Lipopolissacarídeos , Quartzo , Animais , Humanos , Técnicas de Cocultura , Reprodutibilidade dos Testes , Pulmão , Citocinas
16.
J Cell Physiol ; 227(9): 3333-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22213341

RESUMO

Alkaptonuria (AKU) is a rare genetic disease associated with the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products which leads to the deposition of melanin-like pigments (ochronosis) in connective tissues. Although numerous case reports have described ochronosis in joints, little is known on the molecular mechanisms leading to such a phenomenon. For this reason, we characterized biochemically chondrocytes isolated from the ochronotic cartilage of AKU patients. Based on the macroscopic appearance of the ochronotic cartilage, two sub-populations were identified: cells coming from the black portion of the cartilage were referred to as "black" AKU chondrocytes, while those coming from the white portion were referred to as "white" AKU chondrocytes. Notably, both AKU chondrocytic types were characterized by increased apoptosis, NO release, and levels of pro-inflammatory cytokines. Transmission electron microscopy also revealed that intracellular ochronotic pigment deposition was common to both "white" and "black" AKU cells. We then undertook a proteomic and redox-proteomic analysis of AKU chondrocytes which revealed profound alterations in the levels of proteins involved in cell defence, protein folding, and cell organization. An increased post-translational oxidation of proteins, which also involved high molecular weight protein aggregates, was found to be particularly relevant in "black" AKU chondrocytes.


Assuntos
Alcaptonúria/metabolismo , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/metabolismo , Citocinas/metabolismo , Óxido Nítrico/metabolismo , Ocronose/genética , Idoso , Alcaptonúria/genética , Alcaptonúria/patologia , Apoptose/genética , Proliferação de Células , Condrócitos/patologia , Citocinas/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Ocronose/metabolismo , Ocronose/patologia , Oxirredução , Pigmentação/genética , Proteoma/genética , Proteoma/metabolismo
17.
Br J Nutr ; 108(6): 963-73, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22152988

RESUMO

Carotenoid consumption has been linked to a number of beneficial health effects, including the reduction of chronic diseases such as cancer and cardiovascular complications. However, no data are available on their action on the intestinal epithelium, being exposed to the highest concentrations of carotenoids in the human body, and where they could act preventively on intestinal inflammatory diseases such as Crohn's disease and ulcerative colitis. The objective of the present study was to investigate whether lycopene and ß-carotene in micelles (M), at concentrations that could be reached via the diet (10-25 µg/ml) could aid in the reduction of TNF-α plus IL-1ß-induced inflammation of Caco-2 human epithelial cells. The impact on biomarkers of inflammation, including IL-8, NO and cyclo-oxygenase-2 (through PGE-2α), and the NF-κB and mitogen-activated protein kinase (MAPK) pathways of intracellular signalling cascades were evaluated compared with controls (empty M). Furthermore, proteomic analyses were conducted from total cellular protein extracts. The results revealed that isolated carotenoids had no statistical significant anti-inflammatory effect on the biomarkers observed, or on the regulation of NF-κB and MAPK. Nevertheless, analyses of the proteome suggested that fifteen proteins were significantly (P < 0·05, expression ratio >1·3) differentially regulated following ß-carotene exposure, participating mostly in metabolic activities including antioxidant mechanisms, such as glutathione S-transferase A1. Only one protein was differentially regulated by lycopene (profilin-1). To our knowledge, this is the first attempt to investigate pathways involved in the action of carotenoids on the intestinal epithelium.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Carotenoides/metabolismo , Regulação para Baixo , Enterócitos/metabolismo , Mediadores da Inflamação/metabolismo , Proteínas/metabolismo , Regulação para Cima , Biomarcadores/metabolismo , Células CACO-2 , Enterócitos/imunologia , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Humanos , Licopeno , Micelas , Proteínas Quinases Ativadas por Mitógeno/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/química , NF-kappa B/metabolismo , Concentração Osmolar , Mapeamento de Peptídeos , Profilinas/química , Profilinas/metabolismo , Proteômica/métodos , beta Caroteno/metabolismo
18.
NanoImpact ; 28: 100439, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36402283

RESUMO

Air-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12. A standard operating procedure (SOP) was developed and applied by all partners for aerosolized delivery of materials, i.e., a water-soluble molecular substance (fluorescence-spiked salt) and two poorly soluble particles, crystalline silica quartz (DQ12) and titanium dioxide nanoparticles (TiO2 NM-105). The material dose delivered to transwell inserts was quantified with spectrofluorometry (fluorescein) and with the quartz crystal microbalance (QCM) integrated in the VITROCELL® Cloud12 system. The shape and agglomeration state of the deposited particles were confirmed with transmission electron microscopy (TEM). Inter-laboratory comparison of the device-specific performance was conducted in two steps, first for molecular substances (fluorescein-spiked salt), and then for particles. Device- and/or handling-specific differences in aerosol deposition of VITROCELL® Cloud12 systems were characterized in terms of the so-called deposition factor (DF), which allows for prediction of the transwell insert-deposited particle dose from the particle concentration in the aerosolized suspension. Albeit DF varied between the different labs from 0.39 to 0.87 (mean (coefficient of variation (CV)): 0.64 (28%)), the QCM of each VITROCELL® Cloud 12 system accurately measured the respective transwell insert-deposited dose. Aerosolized delivery of DQ12 and TiO2 NM-105 particles showed good linearity (R2 > 0.95) between particle concentration of the aerosolized suspension and QCM-determined insert-delivered particle dose. The VITROCELL® Cloud 12 performance for DQ12 particles was identical to that for fluorescein-spiked salt, i.e., the ratio of measured and salt-predicted dose was 1.0 (29%). On the other hand, a ca. 2-fold reduced dose was observed for TiO2 NM-105 (0.54 (41%)), which was likely due to partial retention of TiO2 NM-105 agglomerates in the vibrating mesh nebulizer of the VITROCELL® Cloud12. This inter-laboratory comparison demonstrates that the QCM integrated in the VITROCELL® Cloud 12 is a reliable tool for dosimetry, which accounts for potential variations of the transwell insert-delivered dose due to device-, handling- and/or material-specific effects. With the detailed protocol presented herein, all seven partner laboratories were able to demonstrate dose-controlled aerosolization of material suspensions using the VITROCELL® Cloud12 exposure system at dose levels relevant for observing in vitro hazard responses. This is an important step towards regulatory approved implementation of ALI lung cell cultures for in vitro hazard assessment of aerosolized materials.


Assuntos
Extremidade Superior , Fluoresceína , Correlação de Dados
19.
Proteomics ; 11(7): 1351-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21365747

RESUMO

To investigate the phosphorylation capability of serogroup A Neisseria meningitidis (MenA) and to implement our knowledge in meningococcal biology and in bacterial post-translational modifications, cell extracts were separated by 2-DE and 51 novel phosphoproteins were revealed by the use of the highly specific Ser/Thr/Tyr-phosphorylated proteins staining by Pro-Q Diamond and identified by MALDI-ToF/MS. Our results indicate that phosphorylation in MenA is comparable to that of other bacterial species. A first functional characterization of the identified modified proteins was also given, in order to understand their role in meningococcal physiopathology.


Assuntos
Proteínas de Bactérias/análise , Neisseria meningitidis Sorogrupo A , Fosfoproteínas/análise , Proteínas de Bactérias/química , Extratos Celulares/química , Eletroforese em Gel Bidimensional , Humanos , Meningite Meningocócica/microbiologia , Neisseria meningitidis Sorogrupo A/genética , Neisseria meningitidis Sorogrupo A/metabolismo , Mapeamento de Peptídeos/métodos , Fosfoproteínas/química , Fosforilação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem/métodos , Tripsina/metabolismo
20.
J Cell Biochem ; 108(5): 1153-65, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19731249

RESUMO

The aim of the present study was to demonstrate the mitogenic and differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes in mono- and three-dimensional cultures. In order to assess if PRPr supplementation could maintain the chondrocyte phenotype or at least inhibit the cell de-differentiation even after several days in culture, we performed a proteomic study on several cell cultures independently grown, for different periods of time, in culture medium with FCS, human serum (HS), and releasates obtained from PRP and platelet-poor plasma (PPP). We found that PRP treatment actually induced in chondrocytes the expression of proteins (some of which novel) involved in differentiation.


Assuntos
Cartilagem Articular/metabolismo , Diferenciação Celular , Condrócitos/fisiologia , Meios de Cultura , Plasma Rico em Plaquetas/metabolismo , Plaquetas/metabolismo , Técnicas de Cultura de Células , Desdiferenciação Celular , Células Cultivadas , Condrócitos/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Biossíntese Peptídica , Fator de Crescimento Derivado de Plaquetas/análise , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA