Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(6): 2800-2817, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36806960

RESUMO

RecA-mediated homologous recombination (HR) is a key mechanism for genome maintenance and plasticity in bacteria. It proceeds through RecA assembly into a dynamic filament on ssDNA, the presynaptic filament, which mediates DNA homology search and ordered DNA strand exchange. Here, we combined structural, single molecule and biochemical approaches to characterize the ATP-dependent assembly mechanism of the presynaptic filament of RecA from Streptococcus pneumoniae (SpRecA), in comparison to the Escherichia coli RecA (EcRecA) paradigm. EcRecA polymerization on ssDNA is assisted by the Single-Stranded DNA Binding (SSB) protein, which unwinds ssDNA secondary structures that block EcRecA nucleofilament growth. We report by direct microscopic analysis of SpRecA filamentation on ssDNA that neither of the two paralogous pneumococcal SSBs could assist the extension of SpRecA nucleopolymers. Instead, we found that the conserved RadA helicase promotes SpRecA nucleofilamentation in an ATP-dependent manner. This allowed us to solve the atomic structure of such a long native SpRecA nucleopolymer by cryoEM stabilized with ATPγS. It was found to be equivalent to the crystal structure of the EcRecA filament with a marked difference in how RecA mediates nucleotide orientation in the stretched ssDNA. Then, our results show that SpRecA and EcRecA HR activities are different, in correlation with their distinct ATP-dependent ssDNA binding modes.


Assuntos
Recombinases Rec A , Streptococcus pneumoniae , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Recombinases Rec A/metabolismo , Recombinases Rec A/ultraestrutura , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Microscopia Crioeletrônica
2.
Anal Chem ; 96(39): 15521-15525, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39284000

RESUMO

Optical methods for single-molecule analysis hold the promise of accurate, sensitive, and rapid detection of target molecules. Here, we demonstrate the efficiency of such an approach for the competitive detection of small molecules in water. Our biosensing method is based on a combination of a single-DNA biochip for the parallelization of tethered particle motion real-time measurements with antibodies and modified targets as molecular competitors. The antibodies are coupled to the particles tethered to the surface by a long DNA bearing in its middle the molecular competitor bound to the antibodies. Competitive target binding leads to a detectable conformational change of the DNA tethers from looped to unlooped in proportions related to the target concentration. We thus managed to detect fluorescein, chosen as a model of a target molecule, in freshwater of various qualities, from solutions prepared with ultrapure water to more complex matrices such as river water and wastewater treatment plant effluent samples. Similar dose-response curves were obtained under these various conditions in a wide range of concentrations from nanomolar to micromolar with a limit of detection around 2 nM.


Assuntos
Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Técnicas Biossensoriais/métodos , DNA/química , DNA/análise , Fluoresceína/química , Limite de Detecção , Água Doce/análise , Água Doce/química , Rios/química , Água/química
3.
Anal Chem ; 92(12): 8151-8158, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32396338

RESUMO

The occurrence of pharmaceutical residues in surface water is raising environmental concern. To accompany the evolution of measures for natural resources protection, sensing methods enabling sensitive and rapid water quality monitoring are needed. We recently managed the parallelization of the Tethered Particle Motion (TPM), a single molecule technique, sensitive to the conformational changes of DNA. Here, we investigate the capacity of high throughput TPM (htTPM) to detect drugs that intercalate into DNA. As a proof-of-concept we analyze the htTPM signal for two DNA intercalating dyes, namely, YOYO-1 and SYTOX orange. The efficient detection of intercalating drugs is then demonstrated with doxorubicin. We further evaluate the possibility to detect carbamazepine, an antiepileptic massively prescribed and persistent in water, which had been described to interact with DNA through intercalation. Our results corroborated by other techniques show that, in fact, carbamazepine is not a DNA intercalator. The comparison of the results obtained with different aqueous buffers and solutions allows us to identify optimal conditions for the monitoring of intercalation compounds by htTPM.


Assuntos
Antibióticos Antineoplásicos/análise , Benzoxazóis/química , DNA/química , Doxorrubicina/análise , Corantes Fluorescentes/química , Compostos de Quinolínio/química , Compostos Orgânicos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA