Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(12): 1785-1790, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116437

RESUMO

The 90 kilo-Dalton heat shock protein (Hsp90) is a molecular chaperone that facilitates the maturation of nascent polypeptides into their biologically active conformation. Because many of the >400 known client protein substrates are implicated in the development/progression of cancer, it is hypothesized that Hsp90 inhibition will simultaneously shut down numerous oncogenic pathways. Unfortunately, most of the small molecule Hsp90 inhibitors that have undergone clinical evaluation thus far have failed due to various toxicities. Therefore, the disruption of Hsp90 protein-protein interactions with cochaperones and/or client substrates has been proposed as an alternative way to achieve Hsp90 inhibition without such adverse events. The hexadepsipeptide Enniatin A (EnnA) has recently been reported to be one such inhibitor that also manifests immunogenic activity. Herein, we report preliminary structure-activity relationship (SAR) studies to determine the structural features that confer this unprecedented activity for an Hsp90 inhibitor. Our studies find that EnnA's branching moieties are necessary for its activity, but some structural modifications are tolerated.

2.
iScience ; 26(12): 108308, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025772

RESUMO

Low response rates and immune-related adverse events limit the remarkable impact of cancer immunotherapy. To improve clinical outcomes, preclinical studies have shown that combining immunotherapies with N-terminal Hsp90 inhibitors resulted in improved efficacy, even though induction of an extensive heat shock response (HSR) and less than optimal dosing of these inhibitors limited their clinical efficacy as monotherapies. We discovered that the natural product Enniatin A (EnnA) targets Hsp90 and destabilizes its client oncoproteins without inducing an HSR. EnnA triggers immunogenic cell death in triple-negative breast cancer (TNBC) syngeneic mouse models and exhibits superior antitumor activity compared to Hsp90 N-terminal inhibitors. EnnA reprograms the tumor microenvironment (TME) to promote CD8+ T cell-dependent antitumor immunity by reducing PD-L1 levels and activating the chemokine receptor CX3CR1 pathway. These findings provide strong evidence for transforming the immunosuppressive TME into a more tumor-hostile milieu by engaging Hsp90 with therapeutic agents involving novel mechanisms of action.

3.
Acta Pharm Sin B ; 11(6): 1446-1468, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34221862

RESUMO

The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA