Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(15)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35956722

RESUMO

The creative fashion industry produces several textile products that play an important role in the national economy. In various countries, this industry has continued to grow along with the strong flow of information technology and e-commerce. The development of textile products for fashion is very dynamic and competitive. Competition is not only about price, but also the quality of organic/synthetic materials, the comfort provided, and designs that change every 4−6 months. Recently, creative fashion not only relies on natural and synthetic polymer-made fibers but also biomass-based waste materials. Therefore, this study aims to manufacture textile products from biomass-based waste materials that can be applied to the creative fashion industry. Two types of raw materials from oil palm empty fruit bunches (EFB), namely, whole-empty fruit bunches (WEFB) and stalk-empty fruit bunches (SEFB), are used as an excellent innovation of rayon viscose fiber (RVF), a noncotton organic yarn capable of providing a solution to the 99% import of global cotton needs. This is expected to increase competitiveness, as well as the added value of palm oil products and their derivatives. The process of manufacturing DP chemically includes prehydrolysis, cooking, bleaching to dissolve the lignin and noncellulosic materials as well as isolation to purify POEFB fiber. Furthermore, DP testing is carried out to determine product quality and compare it with the national product standards. The results show that the alpha-cellulose content reaches >94% with variations in the active alkali of 18%, 20% and 24%. This implies that the WEFB and SEFB are used to fulfill the first requirements of the national standard (SNI 938:2017). The WEFB with an active alkali variation of 24% meets the SNI standard for rayon pulp with a value of S10 = 3.07 and S18 = 7.14%, while all variations of SEFB show opposite results. The use of active alkali at 24% had a brighter color than between 18% and 20%. Additionally, the fiber density of WEFB appears to be higher than that of SEFB. These results correlate positively with DP prepared using 24% alkali as the optimum treatment for all products, as well as the morphological observations performed with scanning electron microscopy (SEM), which shows that WEFB fixated fiber had a larger diameter than SEFB.

2.
Carbohydr Polym ; 234: 115942, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070552

RESUMO

The target of the study is to improve the yield and the colloidal stability of cellulose nano-crystals (CNC) that is obtained through maleic acid hydrolysis. Herein, a facile/ green approach to prepare CNC with high yield and colloidal stability from bamboo fibers is presented. Ball mill pretreatment can break down and open up the structure of bamboo fibers, thus exposing more hydroxyl groups on the surface of pulp fibers and increasing the access of acid molecules into pulp fibers. The maleic acid molecules can easily hydrolyze cellulose, thus releasing more crystalline parts; maleic acid anhydride can react with hydroxyl groups to generate more -COOH groups on CNC. The yield of resultant CNC was 10.55-24.50 %, which was much higher than 2.80 % of the control. The study put forward a facile approach to prepare CNC with high yield and colloidal stability, and paves a possible way for industrialization of CNC production.

3.
Carbohydr Polym ; 222: 115037, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31320063

RESUMO

Cellulose nano-crystals (CNC) have attracted great interests as a novel nanostructured material in recent years, thanks to their excellent mechanical properties, high surface area and lightweight and biocompatibility etc. Due to its low charged group content, CNC prepared from the hydrochloric acid hydrolysis has poor dispersibility in water, which hinders its further applications. In this work, well-dispersed cellulose nano-crystals are successfully prepared using a two-step method, consisting of hydrochloric acid hydrolysis, followed by adsorption of hexadecyl trimethyl ammonium bromide (CTAB) onto CNC. Results show that CTAB at a low concentration (0.13-0.47 mM) provides effective steric barriers to minimize the CNC aggregation, which is supported by TEM images and particle size distribution of CNC. At high CTAB concentrations (>0.5 mM), CNC aggregation occurs, which is due to the "bridging" effect of CTAB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA