Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-18252339

RESUMO

A novel approach to nonlinear classification is presented, in the training phase of the classifier, the training data is first clustered in an unsupervised way by fuzzy c-means or a similar algorithm. The class labels are not used in this step. Then, a fuzzy relation between the clusters and the class identifiers is computed. This approach allows the number of prototypes to be independent of the number of actual classes. For the classification of unseen patterns, the membership degrees of the feature vector in the clusters are first computed by using the distance measure of the clustering algorithm. Then, the output fuzzy set is obtained by relational composition. This fuzzy set contains the membership degrees of the pattern in the given classes. A crisp decision is obtained by defuzzification, which gives either a single class or a "reject" decision, when a unique class cannot be selected based on the available information. The principle of the proposed method is demonstrated on an artificial data set and the applicability of the method is shown on the identification of live-stock from recorded sound sequences. The obtained results are compared with two other classifiers.

2.
Artigo em Inglês | MEDLINE | ID: mdl-18255954

RESUMO

In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of similar fuzzy sets that represent compatible concepts. This results in an unnecessarily complex and less transparent linguistic description of the system. By using a measure of similarity, a rule base simplification method is proposed that reduces the number of fuzzy sets in the model. Similar fuzzy sets are merged to create a common fuzzy set to replace them in the rule base. If the redundancy in the model is high, merging similar fuzzy sets might result in equal rules that also can be merged, thereby reducing the number of rules as well. The simplified rule base is computationally more efficient and linguistically more tractable. The approach has been successfully applied to fuzzy models of real world systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA