Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chirality ; 36(1): e23619, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700546

RESUMO

Even though chiral recognition for crown-ether CSPs is generally understood, on a molecular level, exact mechanisms for the resolution are still unclear. Furthermore, short peptide analytes often contain multiple amino moieties capable of binding to the crown ether selector. In order to extend the understanding in chiral recognition mechanisms, polar organic mode separation of Tyr-Arg-Phe-Lys-NH2 tetrapeptide llll/dddd enantiomers on S- and R-(3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 stationary phases was studied with 50-mM perchloric acid in methanol as mobile phase. Deviation from the generally acceptable 1:1 stoichiometry was supported by mass spectroscopy analysis of the formed complexes between tetrapeptide enantiomer and crown ether selectors, which revealed adducts possessing 1:1, 1:2, and 1:3 stoichiometry. Further investigation of complexation induced shifts by NMR indicated on different binding mechanisms between llll/dddd enantiomers of Tyr-Arg-Phe-Lys-NH2 and crown ether selectors. Enantioselective proton shifts were observed in studied tetrapeptide tyrosine and phenylalanine residues exclusively for llll enantiomer upon binding with S-(3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 selector (and dddd enantiomer with R-(3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 selector), indicating that these two amino acid residues contribute to chiral recognition. The obtained results were in agreement with the LC data.


Assuntos
Éteres de Coroa , Éteres de Coroa/química , Estereoisomerismo , Tirosina , Fenilalanina , Cromatografia Líquida de Alta Pressão/métodos
2.
Medicina (Kaunas) ; 59(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837543

RESUMO

Background and Objectives: Blood pressure measurement is essential evidence to establish that the chosen medicine and dosage are appropriate, and also indirectly indicates whether the medicine is being used at all. Therefore, current research compares adherence to the target blood pressure at home and in the hospital between different age groups, using similar combinations of the drugs prescribed by the doctor within ongoing antihypertensive therapy. Moreover, it is very important to develop a method for the determination of amlodipine and its metabolite, which would suitable for clinical applications, when the result is needed as quick as possible. Materials and Methods: This prospective study included patients aged ≥18 years who were diagnosed with hypertension. Subjects were divided into two age groups according to European Society of Cardiology (ESC) hypertension guidelines; older patients (≥65 years) and adult patients (<65 years). Assessment of adherence rate to antihypertensive medications was performed using a measurement of systolic blood pressure and comparing this to ESC hypertension guideline data. A simple liquid chromatography-tandem mass spectrometer (LC-MS/MS) method for determination of amlodipine and dehydroamlodipine was developed and validated according to the European Medicines Agency guideline on bioanalytical method validation at the Latvian Institute of Organic Synthesis. Results: A total of 81 patients with arterial hypertension were enrolled in this study. A significant number of patients were overweight (N = 33, 40.7%) and obese (N = 36, 44.4%). To control arterial hypertension, 70 (86.4%) patients used fixed-dose combinations, where one of the components was amlodipine. Practically, 36 (44.4%) hypertensive subjects were not able to comply with target blood pressure. Nonetheless, 38 (46.9%) patients who received fixed-dose combinations were able to comply with target blood pressure. Conclusions: Adherence to ESC hypertension guideline proposed target blood pressure was relatively low among hypertensive subjects even though a significant number of patients were taking fixed-dose combinations. Therefore, optimizing prevention, recognition, and care of hypertensive young adults require intensive educational interventions. Moreover, survey data suggest that therapeutic drug monitoring using the validated simple, sensitive LC-MS/MS method is pivotal for further understanding factors influencing adherence.


Assuntos
Anlodipino , Hipertensão , Adulto Jovem , Humanos , Adolescente , Adulto , Anlodipino/efeitos adversos , Anti-Hipertensivos/uso terapêutico , Cromatografia Líquida , Estudos Prospectivos , Combinação de Medicamentos , Espectrometria de Massas em Tandem , Pressão Sanguínea , Adesão à Medicação
3.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208786

RESUMO

The accumulation of lipid intermediates may interfere with energy metabolism pathways and regulate cellular energy supplies. As increased levels of long-chain acylcarnitines have been linked to insulin resistance, we investigated the effects of long-chain acylcarnitines on key components of the insulin signalling pathway. We discovered that palmitoylcarnitine induces dephosphorylation of the insulin receptor (InsR) through increased activity of protein tyrosine phosphatase 1B (PTP1B). Palmitoylcarnitine suppresses protein kinase B (Akt) phosphorylation at Ser473, and this effect is not alleviated by the inhibition of PTP1B by the insulin sensitizer bis-(maltolato)-oxovanadium (IV). This result indicates that palmitoylcarnitine affects Akt activity independently of the InsR phosphorylation level. Inhibition of protein kinase C and protein phosphatase 2A does not affect the palmitoylcarnitine-mediated inhibition of Akt Ser473 phosphorylation. Additionally, palmitoylcarnitine markedly stimulates insulin release by suppressing Akt Ser473 phosphorylation in insulin-secreting RIN5F cells. In conclusion, long-chain acylcarnitines activate PTP1B and decrease InsR Tyr1151 phosphorylation and Akt Ser473 phosphorylation, thus limiting the cellular response to insulin stimulation.


Assuntos
Carnitina/análogos & derivados , Fosforilação/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Tirosina/metabolismo , Animais , Células CHO , Carnitina/farmacologia , Cricetulus , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Insulina/metabolismo , Resistência à Insulina , Modelos Biológicos , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/química
4.
J Cell Mol Med ; 24(20): 11903-11911, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32896106

RESUMO

The suppression of energy metabolism is one of cornerstones of cardiac dysfunction in sepsis/endotoxaemia. To investigate the role of fatty acid oxidation (FAO) in the progression of inflammation-induced cardiac dysfunction, we compared the effects of FAO-targeting compounds on mitochondrial and cardiac function in an experimental model of lipopolysaccharide (LPS)-induced endotoxaemia. In LPS-treated mice, endotoxaemia-induced inflammation significantly decreased cardiac FAO and increased pyruvate metabolism, while cardiac mechanical function was decreased. AMP-activated protein kinase activation by A769662 improved mitochondrial FAO without affecting cardiac function and inflammation-related gene expression during endotoxaemia. Fatty acid synthase inhibition by C75 restored both cardiac and mitochondrial FAO; however, no effects on inflammation-related gene expression and cardiac function were observed. In addition, the inhibition of carnitine palmitoyltransferase 2 (CPT2)-dependent FAO by aminocarnitine resulted in the accumulation of FAO intermediates, long-chain acylcarnitines, in the heart. As a result, cardiac pyruvate metabolism was inhibited, which further exacerbated inflammation-induced cardiac dysfunction. In conclusion, although inhibition of CPT2-dependent FAO is detrimental to cardiac function during endotoxaemia, present findings show that the restoration of cardiac FAO alone is not sufficient to recover cardiac function. Rescue of cardiac FAO should be combined with anti-inflammatory therapy to ameliorate cardiac dysfunction in endotoxaemia.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Progressão da Doença , Endotoxemia/enzimologia , Endotoxemia/fisiopatologia , Coração/fisiopatologia , Inflamação/enzimologia , Inflamação/patologia , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Temperatura Corporal , Carnitina O-Palmitoiltransferase/metabolismo , Endotoxemia/sangue , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Inflamação/sangue , Inflamação/complicações , Lipopolissacarídeos , Camundongos , Mitocôndrias Cardíacas/metabolismo
5.
J Basic Microbiol ; 58(1): 52-59, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29110324

RESUMO

CntA oxygenase is a Rieske 2S-2Fe cluster-containing protein that has been previously described as able to produce trimethylamine (TMA) from carnitine, gamma-butyrobetaine, glycine betaine, and in one case, choline. TMA found in humans is exclusively of bacterial origin, and its metabolite, trimethylamine oxide (TMAO), has been associated with atherosclerosis and heart and renal failure. We isolated four different Rieske oxygenases and determined that there are no significant differences in their substrate panels. All three had high activity toward carnitine/gamma-butyrobetaine, medium activity toward glycine betaine, and very low activity toward choline. We tested the influence of low oxygen concentrations on TMA production in CntA-containing Providencia rettgeri cell cultures and discovered that this process, although dependent on the amount of oxygen, is still feasible in environments with 1 and 0.2% oxygen, which is comparable to oxygen levels in some parts of the digestive system.


Assuntos
Carnitina/metabolismo , Metilaminas/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Providencia/metabolismo , Humanos , Microbiota , Oxirredução , Oxigênio/farmacologia , Providencia/efeitos dos fármacos , Providencia/enzimologia , Especificidade por Substrato
6.
Biochem J ; 473(9): 1191-202, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26936967

RESUMO

The accumulation of long-chain fatty acids (FAs) and their CoA and carnitine esters is observed in the ischaemic myocardium after acute ischaemia/reperfusion. The aim of the present study was to identify harmful FA intermediates and their detrimental mechanisms of action in mitochondria and the ischaemic myocardium. In the present study, we found that the long-chain acyl-CoA and acylcarnitine content is increased in mitochondria isolated from an ischaemic area of the myocardium. In analysing the FA derivative content, we discovered that long-chain acylcarnitines, but not acyl-CoAs, accumulate at concentrations that are harmful to mitochondria. Acylcarnitine accumulation in the mitochondrial intermembrane space is a result of increased carnitine palmitoyltransferase 1 (CPT1) and decreased carnitine palmitoyltransferase 2 (CPT2) activity in ischaemic myocardium and it leads to inhibition of oxidative phosphorylation, which in turn induces mitochondrial membrane hyperpolarization and stimulates the production of reactive oxygen species (ROS) in cardiac mitochondria. Thanks to protection mediated by acyl-CoA-binding protein (ACBP), the heart is much better guarded against the damaging effects of acyl-CoAs than against acylcarnitines. Supplementation of perfusion buffer with palmitoylcarnitine (PC) before occlusion resulted in a 2-fold increase in the acylcarnitine content of the heart and increased the infarct size (IS) by 33%. A pharmacologically induced decrease in the mitochondrial acylcarnitine content reduced the IS by 44%. Long-chain acylcarnitines are harmful FA intermediates, accumulating in ischaemic heart mitochondria and inducing inhibition of oxidative phosphorylation. Therefore, decreasing the acylcarnitine content via cardioprotective drugs may represent a novel treatment strategy.


Assuntos
Carnitina/análogos & derivados , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Fosforilação Oxidativa , Ratos , Ratos Wistar
7.
Pharmacol Res ; 113(Pt B): 788-795, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26621248

RESUMO

The important pathological consequences of insulin resistance arise from the detrimental effects of accumulated long-chain fatty acids and their respective acylcarnitines. The aim of this study was to test whether exercise combined with decreasing the content of long-chain acylcarnitines represents an effective strategy to improve insulin sensitivity in diabetes. We used a novel compound, 4-[ethyl(dimethyl)ammonio]butanoate (methyl-GBB), treatment and exercise to decrease acylcarnitine contents in the plasma and muscles in the insulin resistance models of high fat diet (HFD) fed C57BL/6 mice and db/db mice. The methyl-GBB treatment induced a substantial decrease in all acylcarnitine concentrations in both fed and fasted states as well as when it was combined with exercise. In the HFD fed mice methyl-GBB treatment improved both glucose and insulin tolerance. Methyl-GBB administration, exercise and the combination of both improved insulin sensitivity and reduced blood glucose levels in db/db mice. Methyl-GBB administration and the combination of the drug and exercise activated the PPARα/PGC1α signaling pathway and stimulated the corresponding target gene expression. Insulin insensitivity in db/db mice was not induced by significantly increased fatty acid metabolism, while increased insulin sensitivity by both treatments was not related to decreased fatty acid metabolism in muscles. The pharmacologically reduced long-chain acylcarnitine content represents an effective strategy to improve insulin sensitivity. The methyl-GBB treatment and lifestyle changes via increased physical activity for one hour a day have additive insulin sensitizing effects in db/db mice.


Assuntos
Carnitina/análogos & derivados , Resistência à Insulina/fisiologia , Insulina/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Glicemia/efeitos dos fármacos , Carnitina/sangue , Carnitina/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Músculos/metabolismo , PPAR alfa/metabolismo , Compostos de Amônio Quaternário/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/farmacologia
8.
Biomed Chromatogr ; 29(11): 1670-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25873316

RESUMO

An ultra-high-performance liquid chromatography-mass spectrometry (UPLC/MS/MS) method was developed and validated for the quantification of trimethylamine-N-oxide (TMAO) simultaneously with TMAO-related molecules L-carnitine and γ-butyrobetaine (GBB) in human blood plasma. The separation of analytes was achieved using a Hydrophilic interaction liquid chromatography (HILIC)-type column with ammonium acetate-acetonitrile as the mobile phase. TMAO determination was validated according to valid US Food and Drug Administration guidelines. The developed method was successfully applied to plasma samples from healthy volunteers.


Assuntos
Betaína/análogos & derivados , Carnitina/sangue , Cromatografia Líquida/métodos , Metilaminas/sangue , Espectrometria de Massas em Tandem/métodos , Betaína/sangue , Humanos , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes
9.
Mol Cell Biochem ; 395(1-2): 1-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24878991

RESUMO

In the heart, a nutritional state (fed or fasted) is characterized by a unique energy metabolism pattern determined by the availability of substrates. Increased availability of acylcarnitines has been associated with decreased glucose utilization; however, the effects of long-chain acylcarnitines on glucose metabolism have not been previously studied. We tested how changes in long-chain acylcarnitine content regulate the metabolism of glucose and long-chain fatty acids in cardiac mitochondria in fed and fasted states. We examined the concentrations of metabolic intermediates in plasma and cardiac tissues under fed and fasted states. The effects of substrate availability and their competition for energy production at the mitochondrial level were studied in isolated rat cardiac mitochondria. The availability of long-chain acylcarnitines in plasma reflected their content in cardiac tissue in the fed and fasted states, and acylcarnitine content in the heart was fivefold higher in fasted state compared to the fed state. In substrate competition experiments, pyruvate and fatty acid metabolites effectively competed for the energy production pathway; however, only the physiological content of acylcarnitine significantly reduced pyruvate and lactate oxidation in mitochondria. The increased availability of long-chain acylcarnitine significantly reduced glucose utilization in isolated rat heart model and in vivo. Our results demonstrate that changes in long-chain acylcarnitine contents could orchestrate the interplay between the metabolism of pyruvate-lactate and long-chain fatty acids, and thus determine the pattern of energy metabolism in cardiac mitochondria.


Assuntos
Carnitina/análogos & derivados , Metabolismo Energético , Glucose/metabolismo , Mitocôndrias Cardíacas/fisiologia , Palmitoilcarnitina/administração & dosagem , Animais , Carnitina/metabolismo , Jejum , Ácidos Graxos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Ratos , Ratos Wistar
10.
Pharmacol Res ; 85: 33-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24836867

RESUMO

l-Carnitine is a cofactor in the energy metabolism pathways where it drives the uptake and oxidation of long chain fatty acids (LCFA) by mitochondria. LCFA lipotoxicity causes mitochondrial damage and results in an insufficient energy supply and a decrease in l-carnitine content limits LCFA flux and protects mitochondria. Here, we tested whether the inhibition of GBB dioxygenase (BBOX) or organic cation transporter 2 (OCTN2) is the most effective strategy to decrease l-carnitine content. The activity of 51 compounds was tested and we identified selective inhibitors of OCTN2. In contrast to selective inhibitors of BBOX, OCTN2 inhibitors induced a 10-fold decrease in l-carnitine content in the heart tissues and a significant 35% reduction of myocardial infarct size. In addition, OCTN2 inhibition correlated with the inhibitor content in the heart tissues, and OCTN2 could potentially be an efficient target to increase drug transport into tissues and to reduce drug elimination by urine. In conclusion, the results of this study confirm that selective inhibition of OCTN2, compared to selective inhibition of BBOX, is a far more effective approach to decrease l-carnitine content and to induce cardioprotective effects. OCTN2 could potentially be an efficient tool to increase drug transport in tissues and to reduce drug elimination via urine.


Assuntos
Cardiotônicos/uso terapêutico , Carnitina/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , gama-Butirobetaína Dioxigenase/antagonistas & inibidores , Animais , Cardiotônicos/farmacologia , Carnitina/sangue , Carnitina/urina , Masculino , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Ratos Wistar , Membro 5 da Família 22 de Carreadores de Soluto
11.
J Microencapsul ; 31(3): 246-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24124882

RESUMO

The extremely high hygroscopicity (solubility in water ≥2 g/ml) of the pharmaceutical preparation mildronate defines specific requirements to both packaging material and storage conditions. To overcome the above mentioned inconveniences, microencapsulated form of mildronate was developed using polystyrene (PS) and poly (lactic acid) (PLA) as watertight coating materials. Drug/polymer interaction as well as influence of the microencapsulation process variables on microparticle properties was studied in detail. Water-in-oil-in-water double emulsion technique was adapted and applied for the preparation of PS/mildronate microparticles with total drug load up to 77 %wt and PLA/mildronate microparticles with total drug load up to 80 %wt. The repeatability of the microencapsulation process was ±4% and the encapsulation efficiency of the active ingredient reached 60 %wt. The drug release kinetics from the obtained microparticles was evaluated and it was found that drug release in vivo could be successfully sustained if polystyrene matrix has been used.


Assuntos
Fármacos Cardiovasculares , Ácido Láctico , Metilidrazinas , Polímeros , Poliestirenos , Animais , Cápsulas , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/farmacologia , Cinética , Ácido Láctico/química , Ácido Láctico/farmacocinética , Ácido Láctico/farmacologia , Masculino , Metilidrazinas/química , Metilidrazinas/farmacocinética , Metilidrazinas/farmacologia , Poliésteres , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia , Poliestirenos/química , Poliestirenos/farmacocinética , Poliestirenos/farmacologia , Coelhos
12.
Plants (Basel) ; 13(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202453

RESUMO

Birch outer bark extract (BBE), containing pentacyclic triterpenes such as betulin, lupeol, and betulinic acid, is a widely recognized natural product renowned for its diverse pharmacological effects. However, its limited water solubility restricts its bioavailability. Therefore, the main objective is to enhance the bioavailability of BBE for pharmaceutical use. In this study, we aimed to develop a dispersion system utilizing a unique oleogel-producing method through the recrystallization of BBE from an ethanol solution in the oil phase. We generated an oleogel that demonstrates a notable 42-80-fold improvement in betulin and lupeol peroral bioavailability from BBE in Wistar rats, respectively. A physical paste-like BBE hydrogel developed with antisolvent precipitation showed a 16-56-fold increase in the bioavailability of betulin and lupeol from BBE in rat blood plasma, respectively. We also observed that the repeated administration of the BBE oleogel did not exhibit any toxicity at the tested dose (38.5 mg/kg betulin, 5.2 mg/kg lupeol, 1.5 mg/kg betulinic acid daily for 7 days). Betulin and betulinic acid were not detected in rat heart, liver, kidney, or brain tissues after the peroral administration of the oleogel daily for 7 days. Lupeol was found in rat heart, liver, and kidney tissues.

13.
Front Pharmacol ; 15: 1332752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584604

RESUMO

Objectives: Isoniazid is a key drug in the chemotherapy of tuberculosis (TB), however, interindividual variability in pharmacokinetic parameters and drug plasma levels may affect drug responses including drug induced hepatotoxicity. The current study investigated the relationships between isoniazid exposure and isoniazid metabolism-related genetic factors in the context of occurrence of drug induced hepatotoxicity and TB treatment outcomes. Methods: Demographic characteristics and clinical information were collected in a prospective TB cohort study in Latvia (N = 34). Time to sputum culture conversion (tSCC) was used as a treatment response marker. Blood plasma concentrations of isoniazid (INH) and its metabolites acetylisoniazid (AcINH) and isonicotinic acid (INA) were determined at three time points (pre-dose (0 h), 2 h and 6 h after drug intake) using liquid chromatography-tandem mass spectrometry. Genetic variations of three key INH-metabolizing enzymes (NAT2, CYP2E1, and GSTM1) were investigated by application PCR- and Next-generation sequencing-based methods. Depending on variables, group comparisons were performed by Student's t-test, one-way ANOVA, Mann-Whitney-Wilcoxon, and Kruskal-Wallis tests. Pearson correlation coefficient was calculated for the pairs of normally distributed variables; model with rank transformations were used for non-normally distributed variables. Time-to-event analysis was performed to analyze the tSCC data. The cumulative probability of tSCC was obtained using Kaplan-Meier estimators. Cox proportional hazards models were fitted to estimate hazard rate ratios of successful tSCC. Results: High TB treatment success rate (94.1%) was achieved despite the variability in INH exposure. Clinical and demographic factors were not associated with either tSCC, hepatotoxicity, or INH pharmacokinetics parameters. Correlations between plasma concentrations of INH and its metabolites were NAT2 phenotype-dependent, while GSTM1 genetic variants did not showed any effects. CYP2E1*6 (T > A) allelic variant was associated with INH pharmacokinetic parameters. Decreased level of AcINH was associated with hepatotoxicity, while decreased values of INA/INH and AcINH/INH were associated with month two sputum culture positivity. Conclusion: Our findings suggest that CYP2E1, but not GSTM1, significantly affects the INH pharmacokinetics along with NAT2. AcINH plasma level could serve as a biomarker for INH-related hepatotoxicity, and the inclusion of INH metabolite screening in TB therapeutic drug monitoring could be beneficial in clinical studies for determination of optimal dosing strategies.

14.
Pharmaceutics ; 16(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543282

RESUMO

Genetic polymorphisms can exert a considerable impact on drug pharmacokinetics (PK) and the development of adverse drug reactions (ADR). However, the effect of genetic polymorphisms on the anti-tuberculosis (anti-TB) drug, and particularly rifampicin (RIF), exposure or anti-TB drug-induced liver injury (DILI) remains uncertain. Here, we evaluated the relationship between single nucleotide polymorphisms (SNPs) detected in the RIF pharmacogenes (AADAC, SLCO1B1, SLCO1B3, ABCB1, and NR1I2) and RIF PK parameters, as well as anti-TB treatment-associated DILI. In total, the study enrolled 46 patients with drug-susceptible pulmonary TB. The RIF plasma concentration was measured using the LC-MS/MS method in the blood samples collected pre-dose and 2 and 6 h post-dose, whilst the DILI status was established using the results from blood biochemical analysis performed before and 10-12 days after treatment onset. The genotyping was conducted using a targeted NGS approach. After adjustment for confounders, the patients carrying the rs3732357 GA/AA genotype of the NR1I2 gene were found to have significantly lower RIF plasma AUC0-6 h in comparison to those with GG genotype, while the difference in RIF plasma Cmax was insignificant. None of the analyzed SNPs was related to DILI. Hence, we are the first to report NR1I2 intronic SNP rs3732357 as the genetic component of variability in RIF exposure. Regarding anti-TB treatment-associated DILI, the other preexisting factors promoting this ADR should be considered.

15.
Data Brief ; 46: 108890, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36687149

RESUMO

This dataset describes in detail the outcomes of acute trimethylamine N-oxide (TMAO) administration on cardiac, vascular and mitochondrial functionality in ex vivo and in vivo models. The accumulation of TMAO in target tissues was assessed after performing heart perfusion or by incubating aortic tissue in a solution containing TMAO. To evaluate the impact of TMAO on mitochondrial function, the aortic rings and heart homogenates of Wistar rats were incubated in a solution containing [9,10-3H] palmitate (5 µCi/ml) or D-[U-14C] glucose (0.625 µCi/ml) in the presence or absence of TMAO with subsequent measurement of substrate oxidation and uptake. The effects of TMAO on the vascular reactivity of isolated conductance and resistance vessels were tested by measuring their response to acetylcholine and sodium nitroprusside. The impact of elevated TMAO levels on cardiac function and infarct size caused by ischemia-reperfusion injury was evaluated in Langendorff perfused heart model. Normal and forced heart functioning was analyzed by echocardiography in CD-1 mouse acute cardiac stress model induced by isoproterenol (10 µg/mouse) upon single and 7 repeated daily administrations of TMAO (120 mg/kg). The data presented in the manuscript provide valuable information on measurements performed under conditions of acutely elevated TMAO levels in experimental models of cardiac and vascular function and energy metabolism. Furthermore, the data have high reuse potential as they could be applied in the planning of future in vitro, ex vivo, and in vivo studies addressing the molecular mechanisms targeted by elevated levels of TMAO.

16.
Biomed Pharmacother ; 168: 115803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924790

RESUMO

Long-chain acylcarnitines (LCACs) are intermediates of fatty acid oxidation and are known to exert detrimental effects on mitochondria. This study aimed to test whether lowering LCAC levels with the anti-ischemia compound 4-[ethyl(dimethyl)ammonio]butanoate (methyl-GBB) protects brain mitochondrial function and improves neurological outcomes after transient middle cerebral artery occlusion (MCAO). The effects of 14 days of pretreatment with methyl-GBB (5 mg/kg, p.o.) on brain acylcarnitine (short-, long- and medium-chain) concentrations and brain mitochondrial function were evaluated in Wistar rats. Additionally, the mitochondrial respiration and reactive oxygen species (ROS) production rates were determined using ex vivo high-resolution fluorespirometry under normal conditions, in models of ischemia-reperfusion injury (reverse electron transfer and anoxia-reoxygenation) and 24 h after MCAO. MCAO model rats underwent vibrissae-evoked forelimb-placing and limb-placing tests to assess neurological function. The infarct volume was measured on day 7 after MCAO using 2,3,5-triphenyltetrazolium chloride (TTC) staining. Treatment with methyl-GBB significantly reduced the LCAC content in brain tissue, which decreased the ROS production rate without affecting the respiration rate, indicating an increase in mitochondrial coupling. Furthermore, methyl-GBB treatment protected brain mitochondria against anoxia-reoxygenation injury. In addition, treatment with methyl-GBB significantly reduced the infarct size and improved neurological outcomes after MCAO. Increased mitochondrial coupling efficiency may be the basis for the neuroprotective effects of methyl-GBB. This study provides evidence that maintaining brain energy metabolism by lowering the levels of LCACs protects against ischemia-induced brain damage in experimental stroke models.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Hipóxia/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
17.
Diagnostics (Basel) ; 13(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046558

RESUMO

Our study aimed to evaluate the association between gastric cancer (GC) and higher concentrations of the metabolites L-carnitine, γ-butyrobetaine (GBB) and gut microbiota-mediated trimethylamine N-oxide (TMAO) in the circulation. There is evidence suggesting that higher levels of TMAO and its precursors in blood can be indicative of either a higher risk of malignancy or indeed its presence; however, GC has not been studied in this regard until now. Our study included 83 controls without high-risk stomach lesions and 105 GC cases. Blood serum L-carnitine, GBB and TMAO levels were measured by ultra-high-performance liquid chromatography-mass spectrometry (UPLC/MS/MS). Although there were no significant differences between female control and GC groups, we found a significant difference in circulating levels of metabolites between the male control group and the male GC group, with median levels of L-carnitine reaching 30.22 (25.78-37.57) nmol/mL vs. 37.38 (32.73-42.61) nmol/mL (p < 0.001), GBB-0.79 (0.73-0.97) nmol/mL vs. 0.97 (0.78-1.16) nmol/mL (p < 0.05) and TMAO-2.49 (2.00-2.97) nmol/mL vs. 3.12 (2.08-5.83) nmol/mL (p < 0.05). Thus, our study demonstrated the association between higher blood levels of L-carnitine, GBB, TMAO and GC in males, but not in females. Furthermore, correlations of any two investigated metabolites were stronger in the GC groups of both genders in comparison to the control groups. Our findings reveal the potential role of L-carnitine, GBB and TMAO in GC and suggest metabolic differences between genders. In addition, the logistic regression analysis revealed that the only significant factor in terms of predicting whether the patient belonged to the control or to the GC group was the blood level of L-carnitine in males only. Hence, carnitine might be important as a biomarker or a risk factor for GC, especially in males.

18.
Nutrients ; 14(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35268068

RESUMO

Elevated plasma levels of trimethylamine N-oxide (TMAO) have been proposed as a diet-derived biomarker of cardiometabolic disease risk. Caloric restriction is the most common dietary intervention used to improve cardiometabolic health; however, novel trends suggest a fasting-mimicking diet (FMD) as a more feasible alternative. FMD is a variation of intermittent fasting, based on caloric restriction and limitation of protein sources of animal origin, applied in daily cycles during a 5-day period. As TMAO is intensively produced by gut microbiota after the consumption of animal-derived products, we aim to investigate whether a 5-day FMD affects plasma TMAO levels and markers of metabolic health. To investigate whether an increase in vegetable intake possesses similar effects on TMAO levels and metabolic parameters, healthy volunteers (n = 24) were subjected to a 5-day FMD and 19 volunteers served as a reference group (VEG). This group of volunteers consumed an additional four servings of vegetables per day, but otherwise stayed on their usual diet. FMD resulted in a twofold decrease in plasma TMAO levels, which was not evident in the volunteers from the VEG group. Moreover, FMD led to a weight loss of 2.8 ± 0.2 kg and a subsequent reduction in BMI compared to baseline. The FMD group exhibited a significant elevation in plasma ketone bodies (14-fold compared to baseline) and a decrease in IGF-1 levels by 37 ± 8 ng/mL. Since fasting glucose and C-peptide levels decreased, all volunteers in the FMD group showed improved insulin sensitivity and a decreased HOMA-IR index. In contrast, in the VEG group, only a slight reduction in plasma levels of fasting glucose and triglycerides was noted. In conclusion, we show that FMD is a viable strategy to reduce plasma levels of TMAO by limiting caloric intake and animal-derived protein consumption. The reduction in the level of TMAO could be an additional benefit of FMD, leading to a reduced risk of cardiometabolic diseases.


Assuntos
Jejum , Metilaminas , Dieta , Voluntários Saudáveis , Humanos
19.
Oxid Med Cell Longev ; 2021: 7493190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367467

RESUMO

Long-chain ω-3 polyunsaturated fatty acids (PUFAs) are known to induce cardiometabolic benefits, but the metabolic pathways of their biosynthesis ensuring sufficient bioavailability require further investigation. Here, we show that a pharmacological decrease in overall fatty acid utilization promotes an increase in the levels of PUFAs and attenuates cardiometabolic disturbances in a Zucker rat metabolic syndrome model. Metabolome analysis showed that inhibition of fatty acid utilization by methyl-GBB increased the concentration of PUFAs but not the total fatty acid levels in plasma. Insulin sensitivity was improved, and the plasma insulin concentration was decreased. Overall, pharmacological modulation of fatty acid handling preserved cardiac glucose and pyruvate oxidation, protected mitochondrial functionality by decreasing long-chain acylcarnitine levels, and decreased myocardial infarct size twofold. Our work shows that partial pharmacological inhibition of fatty acid oxidation is a novel approach to selectively increase the levels of PUFAs and modulate lipid handling to prevent cardiometabolic disturbances.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Compostos de Amônio Quaternário/farmacologia , Ácido gama-Aminobutírico/análogos & derivados , Animais , Masculino , Metaboloma , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Ratos , Ratos Zucker , Ácido gama-Aminobutírico/farmacologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-34688197

RESUMO

The pharmacokinetic profiling of drug substances and corresponding metabolites in the biological matrix is one of the most informative tools for the treatment efficacy assessment. Therefore, to satisfy the need for comprehensive monitoring of anti-tuberculosis drugs in human plasma, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for simultaneous quantification of first-line anti-tuberculosis drugs (ethambutol, isoniazid, pyrazinamide, and rifampicin) along with their six primary metabolites. Simple single-step protein precipitation with methanol was chosen as the most convenient sample pre-treatment method. Chromatographic separation of the ten analyte mixture was achieved within 10 minutes on a reverse-phase C8 column using mobile phase gradient mode. The multiple reaction monitoring mode (MRM) was used for analyte detection and quantification in patient samples. The chosen quantification ranges fully covered expected plasma concentrations. The method exhibited acceptable selectivity; the within- and between-run accuracy ranged from 87.2 to 113.6%, but within- and between-run precision was between 1.6 and 14.9% (at the LLOQ level CV < 20%). Although the response of the isonicotinic acid varied depending on the matrix source (CV 21.8%), validation results proved that such inconsistency does not affect the accuracy and precision of results. If stored at room temperature plasma samples should be processed within 4 h after collection, temporary storage at -20 °C up to 24 h is acceptable due to stability issues of analytes. The developed method was applied for the patient sample analysis (n = 34) receiving anti-tuberculosis treatment with the first-line drugs.


Assuntos
Antituberculosos/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Monitoramento de Medicamentos/métodos , Espectrometria de Massas em Tandem/métodos , Tuberculose/tratamento farmacológico , Antituberculosos/sangue , Antituberculosos/uso terapêutico , Monitoramento de Medicamentos/instrumentação , Etambutol/sangue , Etambutol/farmacocinética , Etambutol/uso terapêutico , Humanos , Isoniazida/sangue , Isoniazida/farmacocinética , Isoniazida/uso terapêutico , Plasma/química , Pirazinamida/sangue , Pirazinamida/farmacocinética , Pirazinamida/uso terapêutico , Rifampina/sangue , Rifampina/farmacocinética , Rifampina/uso terapêutico , Tuberculose/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA