RESUMO
Caveolae constitute membrane domains critical for the organization and synchronization of different signaling molecules related to numerous cell processes such as cell migration, invasion, and differentiation. Caveolin-1 (Cav-1) is the main integral membrane protein of these domains. Recently, it was found that a normal expression of aquaporin-3 (AQP3) is required for extravillous trophoblast (EVT) cell migration. Our aim was to investigate the role of caveolae in the migration, invasion, and endovascular differentiation of human EVT cells during placentation and its interaction with AQP3. EVT cells (Swan 71 cell line) were cultured in complete Dulbecco's modified Eagle's medium-nutrient mixture F12 and treated with 5 mM methyl-ß-cyclodextrin (MßCD) to disrupt caveolae. We found that after MßCD treatment, Cav-1 protein was undetectable. In this condition, the ability of the cells to migrate was significantly decreased compared with the control cells, while no differences were observed in the number of invading cells and the metalloproteinases activity between control and MßCD-treated cells. Surprisingly, the disruption of caveolae significantly enhanced EVT endovascular differentiation. On the contrary, the silencing of AQP3, negatively affected tube-like formation. The theoretical analysis of the primary sequence of AQP3 protein revealed a putative Cav-1-binding site. In addition, immunoprecipitation and double immunofluorescence assays showed that AQP3 colocalized with Cav-1. These results showed that during placentation an intact caveola in EVT cells may be necessary for AQP3 and Cav-1 interaction and any perturbations might result in serious pregnancy disorders.
Assuntos
Aquaporina 3/genética , Cavéolas/metabolismo , Caveolina 1/genética , Trofoblastos/metabolismo , Sítios de Ligação , Diferenciação Celular/genética , Movimento Celular/genética , Feminino , Humanos , Placentação/genética , Gravidez , Ligação Proteica , Mapas de Interação de Proteínas/genética , Transdução de Sinais , beta-CiclodextrinasRESUMO
E. coli O157:H7 is a foodborne pathogen responsible for bloody diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). The objective of the present work was to evaluate the ability of colostral IgG obtained from Stx2-immunized cows to prevent against E. coli O157:H7 infection and Stx2 cytotoxicity. Hyperimmune colostrum (HC) was obtained from cows intramuscularly immunized with inactivated Stx2 or vehicle for controls. Colostral IgG was purified by affinity chromatography. Specific IgG antibodies against Stx2 and bovine lactoferrin (bLF) levels in HC and the corresponding IgG (HC-IgG/bLF) were determined by ELISA. The protective effects of HC-IgG/bLF against Stx2 cytotoxicity and adhesion of E. coli O157:H7 and its Stx2-negative mutant were analyzed in HCT-8 cells. HC-IgG/bLF prevention against E. coli O157:H7 was studied in human colon and rat colon loops. Protection against a lethal dose of E. coli O157:H7 was evaluated in a weaned mice model. HC-IgG/bLF showed high anti-Stx2 titers and high bLF levels that were able to neutralize the cytotoxic effects of Stx2 in vitro and in vivo. Furthermore, HC-IgG/bLF avoided the inhibition of water absorption induced by E. coli O157:H7 in human colon and also the pathogenicity of E. coli O157:H7 and E. coli O157:H7Δstx2 in rat colon loops. Finally, HC-IgG/bLF prevented in a 100% the lethality caused by E. coli O157:H7 in a weaned mice model. Our study suggests that HC-IgG/bLF have protective effects against E. coli O157:H7 infection. These beneficial effects may be due to specific anti-Stx2 neutralizing antibodies in combination with high bLF levels. These results allow us to consider HC-IgG/bLF as a nutraceutical tool which could be used in combination with balanced supportive diets to prevent HUS. However further studies are required before recommendations can be made for therapeutic and clinical applications.
Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/imunologia , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/imunologia , Lactoferrina/biossíntese , Toxina Shiga II/imunologia , Animais , Anticorpos Antibacterianos/biossíntese , Anticorpos Neutralizantes/biossíntese , Especificidade de Anticorpos/imunologia , Bovinos , Linhagem Celular Tumoral , Colo/imunologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Escherichia coli O157/patogenicidade , Feminino , Síndrome Hemolítico-Urêmica/veterinária , Humanos , Imunização , Imunoglobulina G/imunologia , Masculino , Camundongos , Testes de Neutralização , Gravidez , RatosRESUMO
Subtilase cytotoxin (SubAB) is a member of the AB5 cytotoxin family and is produced by certain strains of Shiga toxigenic Escherichia coli. The toxin is known to be lethal to mice, but the pathological mechanisms that contribute to Uremic Hemolytic Syndrome (HUS) are poorly understood. In this study we show that intraperitoneal injection of a sublethal dose of SubAB in rats triggers a systemic response, with ascitic fluid accumulation, heart hypertrophy and damage to the liver, colon and kidney. SubAB treated rats presented microalbuminuria 20 days post inoculation. At this time we found disruption of the glomerular filtration barrier and alteration of the protein reabsorption mechanisms of the proximal tubule. In the kidney, SubAB also triggered an epithelial to mesenchymal transition (Wuyts et al., 1996). These findings indicate that apart from direct cytotoxic effects on renal tissues, SubAB causes significant damage to the other organs, with potential consequences for HUS pathogenesis. IMPORTANCE: Uremic Hemolytic Syndrome is an endemic disease in Argentina, with over 400 hundred new cases each year. We have previously described renal effects of Shiga Toxin and its ability to alter renal protein handling. Bearing in mind that Subtilase Cytotoxin is an emerging pathogenic factor, that it is not routinely searched for in patients with HUS, and that to the date its systemic effects have not been fully clarified we decided to study both its systemic effects, and its renal effects to assess whether SubAB could be contributing to pathology seen in children.