RESUMO
Polymorphisms in ERCC1, XPD, and XRCC1 were examined for (a) association with the clinical outcome of 107 non-small cell lung cancer patients receiving front-line platinum-based chemotherapy, and (b) correlation with the ERCC1 mRNA levels of 176 chemo-naive primary tumors. The ERCC1-C8092 allele and the number of ERCC1 polymorphic variants (C8092A and Asn118Asn) were associated with progression-free survival. In non-squamous histology, tumoral ERCC1 mRNA levels were lower in patients homozygous for ERCC1-C8092 as compared with the patients carrying the A allele (p = .024). These findings merit investigation in larger cohorts of patients treated with uniform regimens.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Neoplasias Pulmonares/tratamento farmacológico , Polimorfismo de Nucleotídeo Único , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Platina/administração & dosagem , RNA Mensageiro/análiseRESUMO
To investigate the incidence and prognostically significant correlations and cooperations of LKB1 loss of expression in non-small cell lung cancer (NSCLC), surgical specimens from 188 metastatic and 60 non-metastatic operable stage I-IIIA NSCLC patients were analyzed to evaluate their expression of LKB1 and pAMPK proteins in relation to various processes. The investigated factors included antitumor immunity response regulators STING and PD-L1; pro-angiogenic, EMT and cell cycle targets, as well as metastasis-related (VEGFC, PDGFRα, PDGFRß, p53, p16, Cyclin D1, ZEB1, CD24) targets; and cell adhesion (ß-catenin) molecules. The protein expression levels were evaluated via immunohistochemistry; the RNA levels of LKB1 and NEDD9 were evaluated via PCR, while KRAS exon 2 and BRAFV600E mutations were evaluated by Sanger sequencing. Overall, loss of LKB1 protein expression was observed in 21% (51/248) patients and correlated significantly with histotype (p < 0.001), KRAS mutations (p < 0.001), KC status (concomitant KRAS mutation and p16 downregulation) (p < 0.001), STING loss (p < 0.001), and high CD24 expression (p < 0.001). STING loss also correlated significantly with loss of LKB1 expression in the metastatic setting both overall (p = 0.014) and in lung adenocarcinomas (LUACs) (p = 0.005). Additionally, LKB1 loss correlated significantly with a lack of or low ß-catenin membranous expression exclusively in LUACs, both independently of the metastatic status (p = 0.019) and in the metastatic setting (p = 0.007). Patients with tumors yielding LKB1 loss and concomitant nonexistent or low ß-catenin membrane expression experienced significantly inferior median overall survival of 20.50 vs. 52.99 months; p < 0.001 as well as significantly greater risk of death (HR: 3.32, 95% c.i.: 1.71-6.43; p <0.001). Our findings underscore the impact of the synergy of LKB1 with STING and ß-catenin in NSCLC, in prognosis.
RESUMO
BACKGROUND: Colorectal cancer (CRC) significantly contributes to cancer-related mortality, necessitating the exploration of prognostic factors beyond TNM staging. This study investigates the composition of the gut microbiome and microbial DNA fragments in stage II/III CRC. METHODS: A cohort of 142 patients with stage II/III CRC and 91 healthy controls underwent comprehensive microbiome analysis. Fecal samples were collected for 16S rRNA sequencing, and blood samples were tested for the presence of microbial DNA fragments. De novo clustering analysis categorized individuals based on their microbial profiles. Alpha and beta diversity metrics were calculated, and taxonomic profiling was conducted. RESULTS: Patients with CRC exhibited distinct microbial composition compared to controls. Beta diversity analysis confirmed CRC-specific microbial profiles. Taxonomic profiling revealed unique taxonomies in the patient cohort. De novo clustering separated individuals into distinct groups, with specific microbial DNA fragment detection associated with certain patient clusters. CONCLUSIONS: The gut microbiota can differentiate patients with CRC from healthy individuals. Detecting microbial DNA fragments in the bloodstream may be linked to CRC prognosis. These findings suggest that the gut microbiome could serve as a prognostic factor in stage II/III CRC. Identifying specific microbial markers associated with CRC prognosis has potential clinical implications, including personalized treatment strategies and reduced healthcare costs. Further research is needed to validate these findings and uncover underlying mechanisms.
RESUMO
Determination of microsatellite instability (MSI)/mismatch repair (MMR) status in cancer has several clinical implications. Our aim was to integrate MSI/MMR status from patients tested in Greece to assess the prevalence of MSI-high (MSI-H)/deficient MMR (dMMR) per tumor type, testing patterns over time and concordance between MSI and MMR status. We retrospectively recorded MSI/MMR testing data of patients with diverse tumor types performed in pathology and molecular diagnostics laboratories across Greece. Overall, 18 of 22 pathology and/or molecular diagnostics laboratories accepted our invitation to participate. In the 18 laboratories located across the country, 7916 tumor samples were evaluated for MSI/MMR status. MSI/MMR testing significantly increased in patients with colorectal cancer (CRC) and other tumor types overtime (p < 0.05). The highest prevalence was reported in endometrial cancer (47 of 225 patients, 20.9%). MSI-H/dMMR was observed in most tumor types, even in low proportions. Among 904 tumors assessed both for MSI and MMR status, 21 had discordant results (overall discordance rate, 2.3%). We reported MSI-H/dMMR prevalence rates in patients with diverse cancers, while demonstrating increasing referral patterns from medical oncologists in the country overtime. The anticipated high rate of concordance between MSI and MMR status in paired analysis was confirmed.
RESUMO
BACKGROUND: This study aimed to investigate the molecular profiles of 237 stage III CRC patients from the international IDEA study. It also sought to correlate these profiles with Toll-like and vitamin D receptor polymorphisms, clinicopathological and epidemiological characteristics, and patient outcomes. METHODS: Whole Exome Sequencing and PCR-RFLP on surgical specimens and blood samples, respectively, were performed to identify molecular profiling and the presence of Toll-like and vitamin D polymorphisms. Bioinformatic analysis revealed mutational status. RESULTS: Among the enrolled patients, 63.7% were male, 66.7% had left-sided tumors, and 55.7% received CAPOX as adjuvant chemotherapy. Whole exome sequencing identified 59 mutated genes in 11 different signaling pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) CRC panel. On average, patients had 8 mutated genes (range, 2-21 genes). Mutations in ARAF and MAPK10 emerged as independent prognostic factors for reduced DFS (p = 0.027 and p < 0.001, respectively), while RAC3 and RHOA genes emerged as independent prognostic factors for reduced OS (p = 0.029 and p = 0.006, respectively). Right-sided tumors were also identified as independent prognostic factors for reduced DFS (p = 0.019) and OS (p = 0.043). Additionally, patients with tumors in the transverse colon had mutations in genes related to apoptosis, PIK3-Akt, Wnt, and MAPK signaling pathways. CONCLUSIONS: Molecular characterization of tumor cells can enhance our understanding of the disease course. Mutations may serve as promising prognostic biomarkers, offering improved treatment options. Confirming these findings will require larger patient cohorts and international collaborations to establish correlations between molecular profiling, clinicopathological and epidemiological characteristics and clinical outcomes.
RESUMO
MMR gene germline mutations are considered a major genetic disorder in patients with hereditary nonpolyposis colon cancer (HNPCC) or Lynch syndrome; A total of 15% of sporadic colon carcinomas are MSI-High. MSI has also been observed in other cancers, such as endometrial, gastric, and ovarian cancer. The aim of the current study was to correlate and outline the optimal method between the molecular testing of the instability of microsatellite DNA regions (MSI status) and the loss of protein expression by immunehistochemistry (MMR). A total of 242 paraffin-embedded tissues from gastrointestinal, gynecological, genitourinary, lung, breast, and unknown primary cancer patients were analyzed for the expression of MLH1/MSH2/MSH6/PMS2 by immunohistochemistry, as well as for the molecular analysis of MSI status using PCR-based molecular fragment analysis. A total of 29 MSI-High patients were detected molecularly, while 23 patients were detected by immunohistochemistry, with rates that are comparable according to the literature. Based on the agreement coefficient of the two methods, a substantial agreement emerged (Kappa = 0.675 with standard error = 0.081, p < 0.001). Despite the substantial agreement, both methods ought to be established to determine MSI-H/dMMR status in all cancer types as a first-line screening test.
RESUMO
Gut microbial dysbiosis and microbial passage into the peripheral blood leads to colorectal cancer (CRC) and disease progression. Toll-like (TLR) and vitamin D (VDR) receptors play important role in the immune modulation and polymorphisms that may increase CRC risk and death rates. The aim of the current study was to demonstrate the prognostic value of microbial DNA fragments in the blood of stage III CRC patients and correlate such microbial detection to TLR/VDR polymorphisms. Peripheral blood was collected from 132 patients for the detection of microbial DNA fragments, and TLR/VDR gene polymorphisms. In the detection of various microbial DNA fragments, TLR and VDR polymorphisms was significantly higher compared to healthy group. Homozygous individuals of either TLR or VDR polymorphisms had significantly higher detection rates of microbial DNA fragments. Mutational and MSI status were significantly correlated with TLR9 and VDR polymorphisms. Significantly shorter disease-free survival was associated with patients with BRAF mutated tumors and ApaI polymorphisms, whereas shorter overall survival was associated with the detection of C. albicans. The detection of B. fragilis, as demonstrated by the multivariate analysis, is an independent poor prognostic factor for shorter disease-free survival. TLR/VDR genetic variants were significantly correlated with the detection of microbial fragments in the blood, and this in turn is significantly associated with tumorigenesis and disease progression.
RESUMO
Colorectal cancer (CRC) remains a major public health issue. The detection of parameters that affect CRC prognosis is of great significance. KRAS mutations, play a crucial role in tumorigenesis with a strong predictive value. KRAS-mutated stage-IV CRC patients gain no benefit of the anti-EGFR therapy. The KRAS G12C mutation subtype is under investigation for treatment regimens. The present study aimed to detect various RAS mutations in a cohort of 578 RAS-mutated CRC patients; 49% of them had de novo metastatic disease; 60% were male; 71.4% had left-sided tumors; and 94.6% had a good performance status. KRAS mutations were detected in 93.2% of patients, with KRAS G12D being the most common subtype (30.1%). KRAS mutations presented shorter progression-free (PFS) and overall survival (OS), compared with NRAS mutations, although not significantly (PFS: 13.8 vs. 18.5 months; p = 0.552; OS: 53.1 vs. 60.9 months; p = 0.249). KRAS G12D mutations presented better OS rates (p = 0.04). KRAS G12C mutation, even though not significantly, presented worse PFS and OS rates. KRAS exon 3 and 4 mutations presented different PFS and OS rates, although these were not significant. Concluding, KRAS G12D and G12C mutations lead to better and worst prognosis, respectively. Further studies are warranted to validate such findings and their possible therapeutic implication.
RESUMO
Oxaliplatin-fluoropyrimidine combination therapy is the gold standard treatment for patients with stage III colorectal cancer (CRC); however, treatment duration is now under re-evaluation. The aim of the study was the evaluation of the non-inferiority of three over six months treatment with FOLFOX or CAPOX, in stage III CRC patients. Peripheral blood samples from 121 patients were collected, at three time points during treatment and evaluated for circulating tumor cells (CTCs) and microbial DNA detection (16S rRNA, Escherichia coli, Bacteroides fragilis, Candida albicans). Of all patients, 41.3% and 58.7% were treated with FOLFOX and CAPOX, respectively. CTCs were significantly decreased and increased after three and six months of treatment, respectively. CAPOX tends to reduce the CTCs after 3 months, whereas there is a statistically significant increase of CTCs in patients under FOLFOX after 6 months. A significant correlation was demonstrated between microbial DNA detection and both CTCs detection at baseline and CTCs increase between baseline and three months of treatment. To conclude, the current study provides additional evidence of non-inferiority of three over 6 months of treatment, mainly in patients under CAPOX.
RESUMO
Metastatic colorectal cancer (mCRC) remains a highly lethal malignancy, although considerable progress has resulted from molecular alterations in guiding optimal use of available treatments. CRC recurrence remains a great barrier in the disease management. Hence, the spotlight turns to newly mapped fields concerning recurrence risk factors in patients with resectable CRC with a focus on genetic mutations, microbiota remodeling and liquid biopsies. There is an urgent need for novel biomarkers to address disease recurrence since specific genetic signatures can identify a higher or lower recurrence risk (RR) and, thus, be used both as biomarkers and treatment targets. To a large extent, CRC is mediated by the immune and inflammatory interplay of microbiota, through intestinal dysbiosis. Clarification of these mechanisms will yield new opportunities, leading not only to the appropriate stratification policies, but also to more precise, personalized monitoring and treatment navigation. Under this perspective, early detection of post-operative CRC recurrence is of utmost importance. Ongoing trials, focusing on circulating tumor cells (CTCs) and, even more, circulating tumor DNA (ctDNA), seem to pave the way to a promising, minimally invasive but accurate and life-saving monitoring, not only supporting personalized treatment but favoring patients' quality of life, as well.
RESUMO
Immunotherapy has considerably increased the number of anticancer agents in many tumor types including metastatic colorectal cancer (mCRC). Anti-PD-1 (programmed death 1) and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) immune checkpoint inhibitors (ICI) have been shown to benefit the mCRC patients with mismatch repair deficiency (dMMR) or high microsatellite instability (MSI-H). However, ICI is not effective in mismatch repair proficient (pMMR) colorectal tumors, which constitute a large population of patients. Several clinical trials evaluating the efficacy of immunotherapy combined with chemotherapy, radiation therapy, or other agents are currently ongoing to extend the benefit of immunotherapy to pMMR mCRC cases. In dMMR patients, MSI testing through immunohistochemistry and/or polymerase chain reaction can be used to identify patients that will benefit from immunotherapy. Next-generation sequencing has the ability to detect MSI-H using a low amount of nucleic acids and its application in clinical practice is currently being explored. Preliminary data suggest that radiomics is capable of discriminating MSI from microsatellite stable mCRC and may play a role as an imaging biomarker in the future. Tumor mutational burden, neoantigen burden, tumor-infiltrating lymphocytes, immunoscore, and gastrointestinal microbiome are promising biomarkers that require further investigation and validation.
RESUMO
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death due to its high metastatic potential. This study aimed to investigate the detection and heterogeneity of circulating tumor cells (CTCs) and the microsatellite instability (MSI) status in advanced CRC patients prior to any systemic front-line treatment. Peripheral whole blood was obtained from 198 patients. CTCs were detected using double immunofluorescence and a real time-polymerase chain reaction assay; whereas MSI status was evaluated using fragment analysis. Median age of the patients was 66 years, 63.1% were males, 65.2% had a colon/sigmoid tumor location and 90.4% had a good performance status (PS). MSI-High status was detected in 4.9% of the patients; 33.3%, 56.1% and 8.6% patients had at least one detectable CEACAM5+/EpCAM+, CEACAM5+/EpCAM- and CEACAM5-/EpCAM+ CTC, respectively, and 9.1% of the patients had CEACAM5mRNA-positive CTCs. Following multivariate analysis, age, PS and MSI were confirmed as independent prognostic factors for decreased time to progression, whereas age, PS and CTC presence were confirmed as independent prognostic factors for decreased overall survival. In conclusion, our data support the use of CEACAM5 as a dynamic adverse prognostic CTC biomarker in patients with metastatic CRC and MSI-High is considered an unfavorable prognostic factor in metastatic CRC patient tumors.
RESUMO
Dysbiosis has been associated with various diseases and is of major health importance. Dysbiosis leads to microbial translocation, which is the passage of microorganisms, their fragments, or their metabolites from the intestinal lumen into the blood circulation and other sites. The aim of the study was to determine whether microbial translocation occurs in stage II/III-IV colorectal cancer (CRC) patients. The aim was also to evaluate the usefulness of blood PCR for diagnosis of such translocation and correlate the presence of toll-like receptor/vitamin D receptor (TLR/VDR) gene polymorphisms with microbial DNA fragments detected in the blood of CRC patients. Three hundred and ninety-seven CRC patients enrolled in the study. Peripheral blood DNA was analyzed using PCR for the amplification of genomic DNA encoding 16S rRNA, the ß-galactosidase gene of Escherichia coli, glutamine synthase gene of Bacteroides fragilis, and 5.8S rRNA of Candida albicans. Significantly higher rates of all microbial fragments, but E. coli, detected were observed in the CRC patients (p < 0.001); such detection of all four microbial fragments was also significantly associated with the metastatic disease (p < 0.001), leading to shorter survival rates (p < 0.001). Tumor location in the right colon also significantly correlated with shorter survival (p = 0.016). Individuals with homozygous mutant alleles of TLR/VDR polymorphisms had significantly higher detection rates of microbial DNA fragments. The detection of microbial DNA fragments in CRC patients highlighted the role of these microbes in cancer development, progression, and patients' survival.
RESUMO
CD44, a surface marker for cancer stem cells, interacts with PKM2, a key regulator of aerobic glycolysis, and enhances the glycolytic phenotype of cancer cells leading to antioxidant protection and macromolecules' synthesis. To clarify the clinical importance of this "cross-talk" as a mechanism of drug resistance, we assessed the expression both of PKM2 and of CD44 in cancer cells of patients with epithelial ovarian cancer (EOC) treated with platinum-based treatment. One hundred and seventy-one patients with EOC were assessed for PKM2mRNA expression and PKM2 and CD44 proteins detection. Associations with progression-free survival (PFS) and overall survival (OS) were assessed with Kaplan-Meier and adjusted Cox regression models. PKM2mRNA and protein as well as CD44 protein were detectable in the majority of patients. Positive correlation between PKM2 and CD44 protein expression was observed (Spearman rho = 0.2, p = 0.015). When we used the median to group patients into high versus low expression, high PKM2mRNA and protein levels were significantly associated with lower progression-free survival (PFS; p = 0.003 and p = 0.002, respectively) and shorter overall survival (OS; p ≤ 0.001 and p = 0.001, respectively). However, high CD44 protein expression was significantly correlated only with shorter OS (p = 0.004). Moreover, patients with both high PKM2 and CD44 protein levels experienced shorter PFS and OS (p = 0.007 and p = 0.003, respectively) compared to patients with low expression of both proteins. Finally, higher PKM2mRNA and protein expression as well as CD44 protein expression (HR: 2.16; HR: 1.82; HR: 1.01, respectively) were independent prognostic factors for decreased median OS (mOS), whereas only PKM2 protein expression (HR: 1.95) was an independent prognostic factor for decreased median PFS (mPFS). In conclusion, PKM2 expression is a negative prognostic factor in EOC patients, but the interaction between CD44 and PKM2 that may be implicated in EOC platinum-resistance needs further investigation.
RESUMO
The purpose of the current study is to investigate the prognostic significance of M2 isoform of pyruvate kinase (PKM2) mRNA expression loss in patients with operable colon cancer (CC). Two hundred sixty-two specimens from patients with stage-III or high-risk stage-II CC (group-A) treated with adjuvant fluoropyrimidine and oxaliplatin chemotherapy (FOLFOX), 118 specimens from metastatic CC patients (group-B) treated with FOLFOX, and 104 metastatic CC patients (group-C) treated with irinotecan-based chemotherapy were analyzed for PKM2, TS, ERCC1, MYC, and NEDD9 mRNA expression, as well as KRAS exon2 and BRAFV600E mutations. High PKM2 mRNA expression was correlated with left-sided located primaries (p = 0.001, group-A; p = 0.003, group-B; p = 0.001, group-C), high-grade tumors (p = 0.001, group-A; p = 0.017, group-B; p = 0.021, group-C), microsatellite-stable tumors (p < 0.001, group-A), pericolic lymph nodes involvement (p = 0.018, group-A), and cMYC mRNA expression (p = 0.002, group-A; p = 0.008, group-B; p = 0.006, group-C). High PKM2 mRNA expression was correlated with significantly lower disease free survival (DFS) (p = 0.002) and overall survival (OS) (p = 0.001) in the group-A. Similarly, PKM2 mRNA expression was associated with significantly decreased progression free survival (PFS) (p = 0.001) and OS (p = 0.001) in group-B. On the contrary, no significant association for the PKM2 mRNA expression has been observed with either PFS (p = 0.612) or OS (p = 0.517) in group-C. To conclude, the current study provides evidence for the prediction of PKM2 mRNA expression oxaliplatin-based treatment resistance.
RESUMO
Vitamin D deficiency has been associated with increased colorectal cancer (CRC) incidence risk and mortality. Vitamin D mediates its action through the binding of the vitamin D receptor (VDR), and polymorphisms of the VDR might explain these inverse associations. The aim of the study was the investigation of the relevance of rs731236; Thermus aquaticus I (TaqI), rs7975232; Acetobacter pasteurianus sub. pasteurianus I (ApaI), rs2228570; Flavobacterium okeanokoites I (FokI) and rs1544410, Bacillus stearothermophilus I (BsmI) polymorphisms of the VDR gene to colorectal carcinogenesis (CRC) and progression. Peripheral blood was obtained from 397 patients with early operable stage II/III (n = 202) and stage IV (n = 195) CRC. Moreover, samples from 100 healthy donors and 40 patients with adenomatous polyps were also included as control groups. Genotyping in the samples from patients and controls was performed using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). A significant association was revealed between all four polymorphisms and cancer. Individuals with homozygous mutant (tt, aa, ff or bb) genotypes were more susceptible to the disease (p < 0.001). All of the mutant genotypes detected were also significantly associated with stage IV (p < 0.001), leading to significantly decreased survival (p < 0.001). Moreover, all four polymorphisms were significantly associated with KRAS (Kirsten ras oncogene) mutations and Toll-like receptor (TLR2, TLR4 and TLR9) genetic variants. In multivariate analysis, tt, aa and ff genotypes emerged as independent factors associated with decreased overall survival (OS) (p = 0.001, p < 0.001 and p = 0.001, respectively). The detection of higher frequencies of the VDR polymorphisms in CRC patients highlights the role of these polymorphisms in cancer development and progression.
RESUMO
PURPOSE: The purpose of this study was to investigate the prognostic significance of liver kinase b1 (LKB1) loss in patients with operable colon cancer (CC). MATERIALS AND METHODS: Two hundred sixty-two specimens from consecutive patients with stage III or high-risk stage II CC, who underwent surgical resection with curative intent and received adjuvant chemotherapy with fluoropyrimidine and oxaliplatin, were analyzed for LKB1 protein expression loss, by immunohistochemistry as well as for KRAS exon 2 and BRAFV600E mutations by Sanger sequencing and TS, ERCC1, MYC, and NEDD9 mRNA expression by real-time quantitative reverse transcription polymerase chain reaction. RESULTS: LKB1 expression loss was observed in 117 patients (44.7%) patients and correlated with right-sided located primaries (p=0.032), and pericolic lymph nodes involvement (p=0.003), BRAFV600E mutations (p=0.024), and TS mRNA expression (p=0.041). Patients with LKB1 expression loss experienced significantly lower disease-free survival (DFS) (hazard ratio [HR], 1.287; 95% confidence interval [CI], 1.093 to 1.654; p=0.021) and overall survival (OS) (HR, 1.541; 95% CI, 1.197 to 1.932; p=0.002), compared to patients with LKB1 expressing expressing tumors. Multivariate analysis revealed LKB1 expression loss as independent prognostic factor for both decreased DFS (HR, 1.217; 95% CI, 1.074 to 1.812; p=0.034) and decreased OS (HR, 1.467; 95% CI, 1.226 to 2.122; p=0.019). CONCLUSION: Loss of tumoral LKB1 protein expression, constitutes an adverse prognostic factor in patients with operable CC.
Assuntos
Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Regulação para Baixo , Oxaliplatina/administração & dosagem , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/administração & dosagem , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Quimioterapia Adjuvante , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Oxaliplatina/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/uso terapêutico , Análise de Sobrevida , Resultado do TratamentoRESUMO
A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters > 50 and > 120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (< 0.1 %) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN0.2) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120 nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer. In contrast to the large spread in simulated aerosol particle and CCN number concentrations, the CDNC derived from simulated CCN spectra is less diverse and in better agreement with CDNC estimates consistently derived from the observations (average NMB -13% and -22% for updraft velocities 0.3 and 0.6 ms-1, respectively). In addition, simulated CDNC is in slightly better agreement with observationally derived values at lower than at higher updraft velocities (index of agreement 0.64 vs. 0.65). The reduced spread of CDNC compared to that of CCN is attributed to the sublinear response of CDNC to aerosol particle number variations and the negative correlation between the sensitivities of CDNC to aerosol particle number concentration (∂N d/∂N a) and to updraft velocity (∂N d/∂w). Overall, we find that while CCN is controlled by both aerosol particle number and composition, CDNC is sensitive to CCN at low and moderate CCN concentrations and to the updraft velocity when CCN levels are high. Discrepancies are found in sensitivities ∂N d/∂N a and ∂N d/∂w; models may be predisposed to be too "aerosol sensitive" or "aerosol insensitive" in aerosol-cloud-climate interaction studies, even if they may capture average droplet numbers well. This is a subtle but profound finding that only the sensitivities can clearly reveal and may explain inter-model biases on the aerosol indirect effect.
RESUMO
PURPOSE: Τo evaluate the clinical relevance of CEACAM5mRNA-positive circulating tumor cells (CTCs) in patients with metastatic colorectal cancer (mCRC). METHODS: Peripheral blood was obtained from 436 patients with mCRC before the initiation of systemic therapy. A second sample was obtained on treatment assessment from 296 (67.9%) patients. The detection of CEACAM5mRNA-positive CTCs was performed using a real-time PCR assay. RESULTS: The patients' median age was 67 years and PS (EGOG 0-1) 92%; KRAS exon 2 and BRAFV600E mutated primary tumors were identified in 31.9% and 6.4% of the tested patients, respectively, whereas metastasectomy was performed in 17.7% of the patients. Circulating CEACAM5mRNA-positive CTCs were detected in 125 (28.7%) and 85 (28.7%) patients at baseline and on treatment assessment, respectively. The detection of CEACAM5mRNA-positive cells was revealed, in multivariate analysis, as an independent prognostic factor associated with decreased PFS (HR 1.6; 95% CI 1.1-2.5; p = 0.026) and OS (HR 2.2; 95% CI 1.3-3.2; p < 0.001). The detection of CEACAM5mRNA-positive CTCs in patients with KRAS and BRAFV600E mutations was correlated with shorter PFS (p = 0.041 and p = 0.022, respectively). Moreover, OS was significantly shorter in patients with CEACAM5+/KRAS mutations compared to those with CEACAM5+/KRAS wt tumors (p = 0.023). CONCLUSIONS: Detection of peripheral blood CEACAM5mRNA-positive CTCs is an adverse prognostic factor correlated with poor clinical outcome in patients with mCRC, especially in patients with KRAS and BRAF mutated tumors.
Assuntos
Antígeno Carcinoembrionário/sangue , Neoplasias Colorretais/sangue , Células Neoplásicas Circulantes/metabolismo , Idoso , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Proteínas Ligadas por GPI/sangue , Humanos , Estimativa de Kaplan-Meier , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Metástase Neoplásica , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/patologia , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Estudos Prospectivos , RNA Mensageiro/sangue , RNA Mensageiro/genéticaRESUMO
BACKGROUND: Toll-like receptors (TLRs) play essential role in innate and acquired immunity, are expressed in various cell types, and are associated with altered susceptibility to many diseases, and cancers. The aim of this study was to investigate TLR2 (-196 to-174del), TLR4 (Asp299Gly and Thr399Ile) and TLR9 (T1237C and T1486C) gene polymorphisms at risk of colorectal cancer (CRC) development and progression. METHODS: Peripheral blood was obtained from 397 patients with adjuvant (stage II/III, n = 202) and metastatic (n = 195) CRC. Moreover, blood samples from 50 healthy volunteers and 40 patients with adenomatous polyps were also included as control groups. DNA from patients and controls was analyzed using PCR and PCR-RFLP for genotyping functional polymorphism within TLR2, TLR4 and TLR9 genotypes. RESULTS: TLR2-196 to-174del/del genotype was detected in 76.6% of the patients and was significantly higher that the controls groups (p<0.001). TLR4 Asp299Gly, TLR4 Thr399Ile, TLR9 T1237C and T1486C homozygous genotypes were detected in 70.5%, 70.5%, 61.5% and 61.5% of the patients respectively, and were also significantly higher than that in the control groups (p<0.001). All polymorphisms detected were also significantly associated with the metastatic disease (p<0.001) leading to shorter overall survival (p<0.001); whereas, TLR4 Asp299Gly and Thr399Ile polymorphisms were significantly associated with KRAS mutations. CONCLUSIONS: The detection of higher frequencies of the TLR2, TLR4 and/or TLR9 polymorphisms in CRC patients compared with the control groups highlight the role of these polymorphism in CRC development and cancer progression.