Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Anal Chem ; 96(12): 4817-4824, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38482584

RESUMO

Protein acetylation, a fundamental post-translational modification, plays a critical role in the regulation of gene expression and cellular processes. Monitoring histone deacetylases (HDACs) is important for understanding epigenetic dynamics and advancing the early diagnosis of malignancies. Here, we leverage the dynamic characteristics of DNA-peptide interactions in biomimetic nanochannels to develop a HDAC detection method. In specific, the catalysis of peptide deacetylation by HDACs triggers alterations in the charge states of the nanochannel surface to accommodate DNA molecules. Then, the interaction between DNA and peptides shifts the nanochannel surface charge from positive to negative, leading to a reversal of the ion current rectification (ICR). By calculation of the ICR ratio, quantitative detection of HDACs can be efficiently achieved using the nanochannel-based method in an enzyme-free and label-free manner. Our experimental results demonstrate that HDACs can be detected by using this method within a concentration range of 0.5-500 nM. The innate simplicity and efficiency of this strategy may render it a valuable tool for advancing both fundamental research and clinical applications in the realm of epigenetics and personalized medicine.


Assuntos
Biomimética , Histona Desacetilases , Histona Desacetilases/metabolismo , DNA/metabolismo , Peptídeos/metabolismo , Epigênese Genética , Acetilação , Inibidores de Histona Desacetilases
2.
Nano Lett ; 23(22): 10326-10333, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37931221

RESUMO

Replicating phosphorylation-responsive ionic gates via artificial fluidic systems is essential for biomolecular detection and cellular communication research. However, current approaches to governing the gates primarily rely on volume exclusion or surface charge modulation. To overcome this limitation and enhance ion transport controllability, we introduce graphene oxide (GO) into nanochannel systems, simultaneously regulating the volume exclusion and wettability. Moreover, inspired by (cAMP)-dependent protein kinase A (PKA)-regulated L-type Ca2+ channels, we employ peptides for phosphorylation which preserves them as nanoadhesives to coat nanochannels with GO. The coating boosts steric hindrance and diminishes wettability, creating a substantial ion conduction barrier, which represents a significant advancement in achieving precise ion transport regulation in abiotic nanochannels. Leveraging the mechanism, we also fabricated a sensitive biosensor for PKA activity detection and inhibition exploration. The combined regulation of volume exclusion and wettability offers an appealing strategy for controlled nanofluidic manipulation with promising biomedical applications in diagnosis and drug discovery.


Assuntos
Biomimética , Fosforilação , Molhabilidade , Transporte de Íons
3.
Anal Chem ; 94(24): 8748-8755, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35649159

RESUMO

Molecular diagnostics devoted to discover and monitor new biomarkers is gaining increasing attention in clinical diagnosis. In this work, a programmable DNA-fueled electrochemical analysis strategy is designed for the determination of an emerging biomarker in lung cancer, PD-L1-expressing exosomes. Specifically, PD-L1-expressing exosomes are first enriched onto magnetic beads functionalized with PD-L1 antibody and are able to interact with cholesterol-modified hairpin templates. Then, programmable DNA synthesis starts from the hairpin template-triggered primer exchange reaction and generates a large number of extension products to activate the trans-cleavage activity of CRISPR-Cas12a. After that, CRISPR-Cas12a-catalyzed random cleavage boosts the degradation of methylene blue-labeled signaling strands, so electro-active methylene blue molecules can be enriched onto a cucurbit[7]uril-modified electrode for quantitative determination. Our method demonstrates high sensitivity and specificity toward electrochemical analysis of PD-L1-expressing exosomes in the range from 103 to 109 particles mL-1 with a low detection limit of 708 particles mL-1. When applied to clinical samples, our method reveals an elevated level of circulating PD-L1-expressing exosomes in lung cancer patients, especially for those at the advanced stages. Therefore, our method may provide new insight into liquid biopsy for better implementation of immunotherapy in lung cancer in the future.


Assuntos
Exossomos , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , DNA/análise , Exossomos/química , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Azul de Metileno/química
4.
Biosens Bioelectron ; 246: 115907, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38064995

RESUMO

Human trophoblast surface cell antigen 2 (Trop-2) on the tumor cell membrane can not only serve as the target for chemotherapy drugs, but also as a biomarker for typing and prognosis of breast cancer; however, assay of Trop-2 is seriously hampered due to the limitations of available tool. Herein, we have designed and fabricated an electrochemical biosensor for the assay of Trop-2 based on methylene blue (MB)-assisted assembly of DNA nanocomposite particles (DNPs). Specially, the recognition between Trop-2 and its aptamer may activate the primer exchange reaction (PER) on an electrode surface to produce long single-strand DNA (ssDNA) which can be self-assembled into DNPs by electrostatic interaction between negative charged DNA and positive charged and electro-active MB molecules which can also be used to give electrochemical signal. By using this electrochemical biosensor, ultrasensitive detection of tumor cells with high Trop-2 expressions can be conducted, with the limit of detection (LOD) of 1 cell/mL. Moreover, this biosensor can be further used for accurately profiling Trop-2 expression of tumor cells in mouse tissues, suggesting its great potential in the precise definition of breast cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanopartículas , Humanos , Animais , Camundongos , Feminino , Técnicas Eletroquímicas , Azul de Metileno/química , Neoplasias da Mama/diagnóstico , DNA , DNA de Cadeia Simples , Limite de Detecção
5.
Biosens Bioelectron ; 262: 116550, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38976958

RESUMO

Circulating tumor cell (CTC) has been a valuable biomarker for the diagnosis of breast cancer, while folate receptor is a kind of cell surface receptor glycoprotein which is overexpressed in breast cancer. In this work, we have designed and fabricated an electrochemical biosensor for sensitive detection of folate receptor-positive CTCs based on mild reduction assisted CRISPR/Cas system. Specifically, folate functionalized magnetic beads are firstly prepared to capture CTCs owing to the strong affinity between folate and the folate receptors on the surface of cells. Then, the cell membranes are treated by mild reduction so as to expose a large number of free sulfhydryl groups, which can be coupled with maleimide-DNA to introduce the signal amplified CRISPR/Cas12a system. After the trans-cleavage activity of CRISPR/Cas12a is activated, the long chain DNA modified with electroactive molecules methylene blue can be randomly cleaved into short DNA fragments, which are then captured on the graphite electrode through the host-guest recognition with cucurbit [7]uril, generating highly amplified electrochemical signal corresponding to the number of CTCs. The electrochemical biosensor not only demonstrates the sensitivity with a low detection limit of 2 cells/mL, but also highlights its excellent selectivity and stability in complex environment. Therefore, our biosensor may provide an alternative tool for the analysis of CTCs.

6.
Anal Chim Acta ; 1274: 341556, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37455076

RESUMO

Circulating tumor cells (CTCs) have now emerged as a type of promising circulating biomarkers in liquid biopsy and can predict the occurrence and development of cancers. In this work, an integrated and renewable interface is fabricated for the capture, release and quantitative analysis of CTCs. As designed, folate receptor-positive CTCs are captured by folic acid-modified DNA probes at the interface through the receptor-ligand interaction, and are efficiently released from the interface with the aid of bleomycin-ferrous complex-regulated cleavage. Taking MCF-7 cells as the model, the functional interface demonstrates high efficiency to selectively capture the folate receptor-positive tumor cells, and the bleomycin-ferrous complex-regulated cleavage not only easily releases the captured cells with well-maintained viability and proliferation ability, but also releases silver nanoparticles that are labeled at the cell surface for highly sensitive quantification by adopting electrochemical techniques with a detection limit of 6 cells/mL. At the meanwhile, the interface is proved to be regenerated through a simple cleavage-hybridization event and reused with high stability. Therefore, our work may provide a new idea for the collection and downstream researches of circulating tumor cells in the future.


Assuntos
Nanopartículas Metálicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Prata , Células MCF-7 , Ácido Fólico , Linhagem Celular Tumoral , Separação Celular/métodos
7.
Crit Rev Anal Chem ; 52(2): 356-374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32762253

RESUMO

Exosomes, small vesicles with the diameters of 40-160 nm, play an important role in intercellular transport and communication. Exosomes are rich in many kinds of biomolecules, and differential expression of exosomal contents directly reflects the state of the original cells. Therefore, the tumor exosomes are appearing as promising biomarkers in liquid biopsy, and highly sensitive and specific detection of tumor exosomes may provide the information for the early diagnosis, real-time monitoring and treatment of the tumors. In this review, we summarized the recent advances in the detection of tumor exosomes, mainly focusing on the use of different analytical techniques, such as optical and electrochemical methods as well as that combination with newly-emerging microfluidic techniques, thereby providing valuable information for the application in the clinical diagnosis and management of the tumors.


Assuntos
Exossomos , Neoplasias , Biomarcadores/análise , Técnicas Eletroquímicas , Exossomos/química , Exossomos/metabolismo , Exossomos/patologia , Humanos , Biópsia Líquida/métodos , Neoplasias/diagnóstico , Neoplasias/patologia
8.
J Mater Chem B ; 10(3): 450-455, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34981801

RESUMO

The simple and sensitive detection of protein is of great significance in biological research and medical diagnosis. However, the commonly-used methods, such as enzyme-linked immunosorbent assay (ELISA), usually rely on signal tags labeled on the antibody, which limits the sensitivity and stability. Herein, we have designed and constructed a colorimetric immunosensor in this work for the analysis of protein by taking advantage of 2D metal-organic framework (2D-MOF) nanomaterials as enzyme mimics. The nanomaterial shows a strong peroxidase mimetic activity, and good selectivity after it is modified with a specific aptamer. Therefore, taking carcinoembryonic antigen (CEA) as an example, this immunosensor achieves a good detection performance with a linear range from 1 pg mL-1 to 1000 ng mL-1 and a limit of detection (LOD) of 0.742 pg mL-1. Moreover, the sensor can successfully distinguish the human serum of colorectal cancer patients from healthy people, which suggests that this sensor has great potential in clinical applications. More importantly, the mass production, low cost, stability and ease of transport of the MOFs nanomaterials, as well as the ability for visual detection will make this sensor suitable for point-of-care (POC) testing in remote or resource-poor areas.


Assuntos
Antígeno Carcinoembrionário/sangue , Colorimetria/métodos , Imunoensaio/métodos , Estruturas Metalorgânicas/química , Nanoestruturas/química , Anticorpos Imobilizados/imunologia , Aptâmeros de Nucleotídeos/química , Benzidinas/química , Biomarcadores/sangue , Antígeno Carcinoembrionário/imunologia , Catálise , Compostos Cromogênicos/química , Neoplasias Colorretais/sangue , Humanos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção
9.
Biosens Bioelectron ; 217: 114668, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108585

RESUMO

Covalent organic frameworks (COFs) are an emerging type of porous crystalline polymers that are built by light elements (typically H, B, C, N, O and Si) via organic covalent bonds. Currently, COFs have been exploited for biomedical application due to their unique properties, such as structural diversity, intrinsic stability, ordered porosity, tailor-made functions, and excellent adsorption features. In particular, COFs are increasingly popular in the construction of biosensors for the detection of various disease biomarkers, and have been extended to the clinical applicability for early diagnostics, medication instruction and prognostic monitoring of diseases. In this review, we mainly summarize the recent advances on COFs-based biosensors for the assay of disease biomarkers with clinical applications. According to the features of molecular structure, disease biomarkers are classified into four categories, including small biological ions/molecules, proteins, nucleic acids, and cancer cells/exosomes. Impressively, COFs-based biosensors present a bright prospect in clinical diagnosis of diseases in both hospital-end and household-end utilization.


Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Ácidos Nucleicos , Biomarcadores , Estruturas Metalorgânicas/química , Polímeros/química
10.
Biosens Bioelectron ; 176: 112913, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349534

RESUMO

Breast cancer is the most common malignant disease among women worldwide. Nowadays, combined therapy against several therapeutic targets is becoming a promising treatment to enhance the survival rate of the patients with some lethal subtypes, and also proposes high demand on the discrimination of the co-existing targets in breast cancer. In this work, we designed in situ automatous DNA assembly reaction and applied it for the simultaneous identification of dual therapeutic targets using electrochemical techniques. Taking triple-negative breast cancer cell MDA-MB-231 as a model, chained strand displacement reactions were initiated after the capture probes recognized the surface biomarkers, epidermal growth factor receptor and intercellular adhesion molecule-1, respectively. Then, an increased electrochemical signaling was created to reveal the co-expression of the two targets using quantum dots as electrochemical labeling. Electrochemical results demonstrated high sensitivity and specificity of our method toward the identification of the coexisted therapeutic targets even in the serum samples, which also allowed to monitor the enhanced efficiency of combined therapy. Therefore, our method suggested a potential use in the accurate identification of therapeutic targets in breast cancer that might provide more information to facilitate the combined therapy in clinic.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , DNA , Técnicas Eletroquímicas , Feminino , Humanos , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
12.
Biosens Bioelectron ; 194: 113623, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34530371

RESUMO

Cell membrane, a semi-permeable membrane composed of phospholipid bilayers, is a natural barrier to prevent extracellular substances from freely entering the cell. Cell membrane with selective permeability and fluidity ensures the relative stability of the intracellular environment and enables various biochemical reactions to smoothly operate in an orderly manner. Inspired by the natural composition and transport process, various cell membranes and synthetic bionic films as the mimics of cell membranes have emerged as appealing camouflage materials for biosensing applications. The membranes are devoted to surface modification and substance delivery, and realize the detection or in situ analysis of multiple biomarkers, such as glucose, nucleic acids, virus, and circulating tumor cells. In this review, we summarize the recent advances in cell membrane camouflage-based biosensing applications, mainly focusing on the use of the membranes extracted from natural cells (e.g., blood cells and cancer cells) as well as biomimetic membranes. Materials and surfaces camouflaged with cell membranes are shown to have superior stability and biocompatibility as well as intrinsic properties of original cells, which greatly facilitate their use in biosensing. In specific, camouflage with blood cell membranes bestows low immunogenicity and prolonged blood circulation time, camouflage with cancer cell membranes provides homologous targeting ability, and camouflage with biomimetic membranes endows considerable plasticity for functionalization. Further research is expected to focus on the deeper understanding of cell-specific properties of membranes and the exploration of hybrid membranes, which might provide new development opportunities for cell membrane camouflage-based biosensing application.


Assuntos
Técnicas Biossensoriais , Membrana Celular , Membranas Artificiais , Permeabilidade
13.
Food Chem ; 338: 127827, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32822900

RESUMO

Ochratoxin A (OTA) is a toxic metabolite that is widely distributed in food products. Herein, we proposed a new fluorescent aptasensor for OTA detection by using cascade strand displacement reaction. The binding of OTA and OTA aptamer on magnetic beads surface inhibited its hybridization with complementary DNA, and subsequently initiated the strand displacement reaction that induced amplified fluorescence signal. By tracing fluorescence response, our method demonstrated an improved detection limit of 0.63 ng/mL, a short assay time of 110 min, and a satisfactory detection specificity by using ochratoxin B, aflatoxin B1, and zearalenone as control toxins. Recovery studies were conducted by spiking OTA in real food samples, including white wine, red wine, cereal drink, coffee beverage and tea beverage, and confirmed desirable accuracy and practical applicability of our method. Therefore, our method may have a great potential use in the food quality control in the future.


Assuntos
Aptâmeros de Nucleotídeos/química , Bebidas/análise , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Ocratoxinas/análise , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/genética , DNA Complementar , Fluorescência , Limite de Detecção , Sensibilidade e Especificidade , Vinho/análise
14.
Gels ; 7(4)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34842664

RESUMO

Carcinoembryonic antigen (CEA) is an important broad-spectrum tumor marker. For CEA detection, a novel type of metal-organic framework (MOF) was prepared by grafting CEA aptamer-incorporated DNA tetrahedral (TDN) nanostructures into PCN-222 (Fe)-based MOF (referred as CEAapt-TDN-MOF colloid nanorods). The synthesized CEAapt-TDN-MOF is a very stable detection system due to the vertex phosphorylated TDN structure at the interface, possessing a one-year shelf-life. Moreover, it exhibits a significant horseradish peroxidase mimicking activity due to the iron porphyrin ring, which leads to a colorimetric reaction upon binding toward antibody-captured CEA. Using this method, we successfully achieved the highly specific and ultra-sensitive detection of CEA with a limit of detection as low as 3.3 pg/mL. In addition, this method can detect and analyze the target proteins in clinical serum samples, effectively identify the difference between normal individuals and patients with colon cancer, and provide a new method for the clinical diagnosis of tumors, demonstrating a great application potential.

15.
Anal Chim Acta ; 1126: 31-37, 2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32736722

RESUMO

In this work, a novel electrochemical biosensor is developed for facile and highly sensitive detection of lipopolysaccharide (LPS) based on collaboration of dual enzymes for multiple-stages signal amplification. Through ingenious design, the specific recognition of target LPS is transformed to the exonuclease III (Exo III)-assisted interface DNA cycling collaborated with the terminal deoxynucleotidyl transferase (TdT)-catalyzed DNA extension, finally inducing significant electrochemical signal concerned with the concentration of LPS. This paper mainly discusses the detection principle, optimization of key factors, and the analytical performance of the biosensor. With the efficient signal amplification, the biosensor shows high sensitivity with a good linearity and a low limit of detection of 1 pg mL-1 for LPS. Moreover, the developed biosensor can clearly discriminate LPS from interferents and show high specificity for LPS detection. This biosensor has also been successfully employed to measure LPS in real food samples, suggesting potential opportunity for application in food safety detection.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , DNA Nucleotidilexotransferase , Exodesoxirribonucleases , Limite de Detecção , Lipopolissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA