Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(10): e1006613, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29023549

RESUMO

HIV is adept at avoiding naturally generated T cell responses; therefore, there is a need to develop HIV-specific T cells with greater potency for use in HIV cure strategies. Starting with a CD4-based chimeric antigen receptor (CAR) that was previously used without toxicity in clinical trials, we optimized the vector backbone, promoter, HIV targeting moiety, and transmembrane and signaling domains to determine which components augmented the ability of T cells to control HIV replication. This re-engineered CAR was at least 50-fold more potent in vitro at controlling HIV replication than the original CD4 CAR, or a TCR-based approach, and substantially better than broadly neutralizing antibody-based CARs. A humanized mouse model of HIV infection demonstrated that T cells expressing optimized CARs were superior at expanding in response to antigen, protecting CD4 T cells from infection, and reducing viral loads compared to T cells expressing the original, clinical trial CAR. Moreover, in a humanized mouse model of HIV treatment, CD4 CAR T cells containing the 4-1BB costimulatory domain controlled HIV spread after ART removal better than analogous CAR T cells containing the CD28 costimulatory domain. Together, these data indicate that potent HIV-specific T cells can be generated using improved CAR design and that CAR T cells could be important components of an HIV cure strategy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/fisiologia , Recoverina/imunologia , Replicação Viral , Anticorpos Neutralizantes/imunologia , Infecções por HIV/imunologia , Humanos , Transdução de Sinais/fisiologia
2.
J Virol ; 89(18): 9252-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26109719

RESUMO

UNLABELLED: Natural-host sooty mangabeys (SM) infected with simian immunodeficiency virus (SIV) exhibit high viral loads but do not develop disease, whereas infection of rhesus macaques (RM) causes CD4(+) T cell loss and AIDS. Several mechanisms have been proposed to explain these divergent outcomes, including differences in cell targeting, which have been linked to low expression of the canonical SIV entry receptor CCR5 on CD4(+) T cells of SM and other natural hosts. We previously showed that infection and high-level viremia occur even in a subset of SM that genetically lack functional CCR5, which indicates that alternative entry coreceptors are used by SIV in vivo in these animals. We also showed that SM CXCR6 is a robust coreceptor for SIVsmm in vitro. Here we identify CXCR6 as a principal entry pathway for SIV in SM primary lymphocytes. We show that ex vivo SIV infection of lymphocytes from CCR5 wild-type SM is mediated by both CXCR6 and CCR5. In contrast, infection of RM lymphocytes is fully dependent on CCR5. These data raise the possibility that CXCR6-directed tropism in CCR5-low natural hosts may alter CD4(+) T cell subset targeting compared with that in nonnatural hosts, enabling SIV to maintain high-level replication without leading to widespread CD4(+) T cell loss. IMPORTANCE: Natural hosts of SIV, such as sooty mangabeys, sustain high viral loads but do not develop disease, while nonnatural hosts, like rhesus macaques, develop AIDS. Understanding this difference may help elucidate mechanisms of pathogenesis. Natural hosts have very low levels of the SIV entry coreceptor CCR5, suggesting that restricted entry may limit infection of certain target cells, although it is unclear how the virus replicates so robustly. Here we show that in sooty mangabey lymphocytes, infection is mediated by the alternative entry coreceptor CXCR6, as well as CCR5. In rhesus macaque lymphocytes, however, infection occurs entirely through CCR5. The use of CXCR6 for entry, combined with very low CCR5 levels, may redirect the virus to different cell targets in natural hosts. It is possible that differential targeting may favor infection of nonessential cells and limit infection of critical cells in natural hosts, thus contributing to benign outcome of infection.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Receptores CCR5/metabolismo , Receptores CXCR/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Internalização do Vírus , Animais , Linfócitos T CD4-Positivos/virologia , Cercocebus atys , Células HEK293 , Humanos , Receptores CCR5/genética , Receptores CXCR/genética , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Tropismo Viral/fisiologia
3.
Blood ; 121(9): 1524-33, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23264589

RESUMO

We report the safety and tolerability of 87 infusions of lentiviral vector­modified autologous CD4 T cells (VRX496-T; trade name, Lexgenleucel-T) in 17 HIV patients with well-controlled viremia. Antiviral effects were studied during analytic treatment interruption in a subset of 13 patients. VRX496-T was associated with a decrease in viral load set points in 6 of 8 subjects (P = .08). In addition, A → G transitions were enriched in HIV sequences after infusion, which is consistent with a model in which transduced CD4 T cells exert antisense-mediated genetic pressure on HIV during infection. Engraftment of vector-modified CD4 T cells was measured in gut-associated lymphoid tissue and was correlated with engraftment in blood. The engraftment half-life in the blood was approximately 5 weeks, with stable persistence in some patients for up to 5 years. Conditional replication of VRX496 was detected periodically through 1 year after infusion. No evidence of clonal selection of lentiviral vector­transduced T cells or integration enrichment near oncogenes was detected. This is the first demonstration that gene-modified cells can exert genetic pressure on HIV. We conclude that gene-modified T cells have the potential to decrease the fitness of HIV-1 and conditionally replicative lentiviral vectors have a promising safety profile in T cells.


Assuntos
Linfócitos T CD4-Positivos/transplante , Terapia Genética/métodos , Infecções por HIV/terapia , HIV-1/genética , Lentivirus/genética , Oligonucleotídeos Antissenso/farmacologia , Transferência Adotiva/métodos , Adulto , Antivirais/efeitos adversos , Antivirais/metabolismo , Antivirais/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Feminino , Terapia Genética/efeitos adversos , Vetores Genéticos/efeitos adversos , Vetores Genéticos/metabolismo , Vetores Genéticos/farmacologia , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Lentivirus/metabolismo , Lentivirus/fisiologia , Masculino , Pessoa de Meia-Idade , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/genética , Transdução Genética/métodos , Carga Viral/efeitos dos fármacos , Replicação Viral/genética
4.
Commun Biol ; 7(1): 387, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553542

RESUMO

Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilizes a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impairs cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict. Behavioral alterations are accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes are observed in human cytokines, including HIV-induced reductions in human TNFα, and cocaine and HIV interactions on GM-CSF levels. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.


Assuntos
Cocaína , Infecções por HIV , Camundongos , Humanos , Animais , Infecções por HIV/complicações , Extinção Psicológica , Encéfalo , Córtex Pré-Frontal
5.
PLoS Pathog ; 7(2): e1001300, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21383972

RESUMO

Elite suppressors (ES) are a rare population of HIV-infected individuals that are capable of naturally controlling the infection without the use of highly active anti-retroviral therapy (HAART). Patients on HAART often achieve viral control to similar (undetectable) levels. Accurate and sensitive methods to measure viral burden are needed to elucidate important differences between these two patient populations in order to better understand their mechanisms of control. Viral burden quantification in ES patients has been limited to measurements of total DNA in PBMC, and estimates of Infectious Units per Million cells (IUPM). There appears to be no significant difference in the level of total HIV DNA between cells from ES patients and patients on HAART. However, recovering infectious virus from ES patient samples is much more difficult, suggesting their reservoir size should be much smaller than that in patients on HAART. Here we find that there is a significant difference in the level of integrated HIV DNA in ES patients compared to patients on HAART, providing an explanation for the previous results. When comparing the level of total to integrated HIV DNA in these samples we find ES patients have large excesses of unintegrated HIV DNA. To determine the composition of unintegrated HIV DNA in these samples, we measured circular 2-LTR HIV DNA forms and found ES patients frequently have high levels of 2-LTR circles in PBMC. We further show that these high levels of 2-LTR circles are not the result of inefficient integration in ES cells, since HIV integrates with similar efficiency in ES and normal donor cells. Our findings suggest that measuring integration provides a better surrogate of viral burden than total HIV DNA in ES patients. Moreover, they add significantly to our understanding of the mechanisms that allow viral control and reservoir maintenance in this unique patient population.


Assuntos
Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/virologia , DNA Circular/genética , DNA Viral/genética , Infecções por HIV/virologia , HIV-1/genética , Integração Viral , Estudos de Coortes , Infecções por HIV/tratamento farmacológico , Repetição Terminal Longa de HIV/genética , Humanos , Carga Viral
6.
Res Sq ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37841842

RESUMO

Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impaired cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict were observed. Behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human cytokines, including HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα, and cocaine induced alterations in mouse GM-CSF. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.

7.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645889

RESUMO

Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between progressive HIV infection and cocaine use disorder is likely bidirectional, with cocaine use having direct effects on immune function while HIV infection can alter addiction-related behavior. To better characterized the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of progressive HIV infection on cocaine-related behaviors in a cocaine conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection did not impact the formation of a cocaine CPP, but did result in resistance to extinction of the CPP. No effects of HIV on yohimbine-primed reinstatement or cocaine seeking under conflict were observed. These behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human markers. Among other targets, this included HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα and cocaine-induced alterations in human TNFα and mouse GM-CSF such that cocaine exposure increases both cytokines only in the absence of HIV infection. Together these data provide new insights into the unique neurobehavioral processes underlying HIV infection and cocaine use disorders, and further how they interact to effect immune responses.

8.
Virus Res ; 235: 33-36, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28390972

RESUMO

HIV-1 Env protein is essential for host cell entry, and targeting Env remains an important antiretroviral strategy. We previously found that a peptide triazole thiol KR13 and its gold nanoparticle conjugate AuNP-KR13 directly and irreversibly inactivate the virus by targeting the Env protein, leading to virus gp120 shedding, membrane disruption and p24 capsid protein release. Here, we examined the consequences of targeting cell-surface Env with the virus inactivators. We found that both agents led to formation of non-infectious virus from transiently transfected HEK293T cells. The budded non-infectious viruses lacked Env gp120 but contained gp41. Importantly, budded virions also retained the capsid protein p24, in stark contrast to p24 leakage from viruses directly treated by these agents and arguing that the agents led to deformed viruses by transforming the cells at a stage before virus budding. We found that the Env inactivators caused gp120 shedding from the transiently transfected HEK293T cells as well as non-producer CHO-K1-gp160 cells. Additionally, AuNP-KR13 was cytotoxic against the virus-producing HEK293T and CHO-K1-gp160 cells, but not untransfected HEK293T or unmodified CHO-K1 cells. The results obtained reinforce the argument that cell-surface HIV-1 Env is metastable, as on virus particles, and provides a conformationally vulnerable target for virus suppression and infectious cell inactivation.


Assuntos
Antivirais/farmacologia , HIV-1/fisiologia , Peptídeos/farmacologia , Triazóis/farmacologia , Montagem de Vírus/efeitos dos fármacos , Inativação de Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Células HEK293 , Humanos
9.
Nat Commun ; 8: 14630, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28251988

RESUMO

Monoclonal antibodies are one of the fastest growing classes of pharmaceutical products, however, their potential is limited by the high cost of development and manufacturing. Here we present a safe and cost-effective platform for in vivo expression of therapeutic antibodies using nucleoside-modified mRNA. To demonstrate feasibility and protective efficacy, nucleoside-modified mRNAs encoding the light and heavy chains of the broadly neutralizing anti-HIV-1 antibody VRC01 are generated and encapsulated into lipid nanoparticles. Systemic administration of 1.4 mg kg-1 of mRNA into mice results in ∼170 µg ml-1 VRC01 antibody concentrations in the plasma 24 h post injection. Weekly injections of 1 mg kg-1 of mRNA into immunodeficient mice maintain trough VRC01 levels above 40 µg ml-1. Most importantly, the translated antibody from a single injection of VRC01 mRNA protects humanized mice from intravenous HIV-1 challenge, demonstrating that nucleoside-modified mRNA represents a viable delivery platform for passive immunotherapy against HIV-1 with expansion to a variety of diseases.


Assuntos
Anticorpos Neutralizantes/genética , HIV-1/efeitos dos fármacos , Nucleosídeos/química , RNA Mensageiro/administração & dosagem , Animais , Anticorpos Monoclonais/genética , Anticorpos Amplamente Neutralizantes , Esquema de Medicação , Feminino , Anticorpos Anti-HIV/biossíntese , Infecções por HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Humanos , Imunização Passiva , Lipídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/farmacologia , RNA Mensageiro/uso terapêutico
10.
PLoS One ; 8(8): e71879, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951263

RESUMO

Resting CD4+T cells infected with HIV persist in the presence of suppressive anti-viral therapy (ART) and are barriers to a cure. One potential curative approach, therapeutic vaccination, is fueled by recognition of the ability of a subset of elite controllers (EC) to control virus without therapy due to robust anti-HIV immune responses. Controllers have low levels of integrated HIV DNA and low levels of replication competent virus, suggesting a small reservoir. As our recent data indicates some reservoir cells can produce HIV proteins (termed GPR cells for Gag-positive reservoir cells), we hypothesized that a fraction of HIV-expressing resting CD4+T cells could be efficiently targeted and cleared in individuals who control HIV via anti-HIV cytotoxic T lymphocytes (CTL). To test this we examined if superinfected resting CD4+T cells from EC express HIV Gag without producing infectious virus and the susceptibility of these cells to CTL. We found that resting CD4+T cells expressed HIV Gag and were cleared by autologous CD8+T cells from EC. Importantly, we found the extent of CTL clearance in our in vitro assay correlates with in vivo reservoir size and that a population of Gag expressing resting CD4+T cells exists in vivo in patients well controlled on therapy.


Assuntos
Linfócitos T CD4-Positivos/imunologia , HIV-1/imunologia , Linfócitos T Citotóxicos/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Técnicas de Cocultura , DNA Viral/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T Citotóxicos/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
11.
J Virol ; 79(3): 1480-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15650174

RESUMO

Coreceptor specificity of human immunodeficiency virus type 1 (HIV-1) strains is generally defined in vitro in cell lines expressing CCR5 or CXCR4, but lymphocytes and macrophages are the principal targets in vivo. CCR5-using (R5) variants dominate early in infection, but strains that use CXCR4 emerge later in a substantial minority of subjects. Many or most CXCR4-using variants can use both CXCR4 and CCR5 (R5X4), but the pathways that are actually used to cause infection in primary cells and in vivo are unknown. We examined several R5X4 prototype and primary isolates and found that they all were largely or completely restricted to CXCR4-mediated entry in primary lymphocytes, even though lymphocytes are permissive for CCR5-mediated entry by R5 strains. In contrast, in primary macrophages R5X4 isolates used both CCR5 and CXCR4. The R5X4 strains were also more sensitive than R5 strains to CCR5 blocking, suggesting that interactions between the R5X4 strains and CCR5 are less efficient. These results indicate that coreceptor phenotyping in transformed cells does not necessarily predict utilization in primary cells, that variability exists among HIV-1 isolates in the ability to use CCR5 expressed on lymphocytes, and that many or most strains characterized as R5X4 are functionally X4 in primary lymphocytes. Less efficient interactions between R5X4 strains and CCR5 may be responsible for the inability to use CCR5 on lymphocytes, which express relatively low CCR5 levels. Since isolates that acquire CXCR4 utilization retain the capacity to use CCR5 on macrophages despite their inability to use it on lymphocytes, these results also raise the possibility that a CCR5-mediated macrophage reservoir is required for sustained infection in vivo.


Assuntos
Linfócitos T CD4-Positivos/virologia , HIV-1/patogenicidade , Receptores CXCR4/metabolismo , Células Cultivadas , Produtos do Gene env , Variação Genética , HIV-1/classificação , HIV-1/metabolismo , Humanos , Macrófagos/virologia , Monócitos/virologia , Fenótipo , Receptores CCR5/metabolismo , Receptores CXCR4/antagonistas & inibidores
12.
Curr Opin Infect Dis ; 17(1): 7-16, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15090884

RESUMO

PURPOSE OF REVIEW: A new mechanistic understanding of how HIV-1 enters cells has emerged recently, and these discoveries are now being translated into novel therapeutic agents. Along with CD4, HIV-1 requires a chemokine receptor, CCR5 or CXCR4, as an entry co-receptor, and differential co-receptor selectivity is an important determinant of viral diversity and pathogenesis. CCR5 and CXCR4 blockers have been the focus of much research and are now entering clinical trials. RECENT FINDINGS: Several CCR5 antagonists with anti-HIV-1 activity have been developed, including small-molecule agents, monoclonal antibodies and modified chemokines. At least four small-molecule and one antibody CCR5 inhibitor are in various stages of preclinical and clinical testing. Most or all infected individuals harbor CCR5-using variants, and promising findings have been reported from very preliminary clinical studies. CXCR4 antagonists under development include small-molecule and short-peptide inhibitors. Only a subset of late-stage individuals harbor CXCR4-using strains, and early clinical studies of CXCR4 inhibition showed some evidence of suppression in certain individuals. SUMMARY: Chemokine receptor antagonists offer great promise as a much-needed new class of antiviral agent. They also raise questions that are unique to agents targeting these cellular receptors, including whether drug resistance will lead to variants with altered co-receptor selectivity, the tolerability of chronically blocking receptors involved in inflammation (CCR5, CXCR4) or essential in development and hematopoesis (CXCR4), and the role of co-receptor phenotyping in selecting blocking agents. In addition to HIV-1 infection, these drugs may also have utility in inflammation, cancer, stem cell transplant and other areas.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Antagonistas dos Receptores CCR5 , Infecções por HIV/tratamento farmacológico , HIV-1 , Receptores CXCR4/antagonistas & inibidores , Humanos
13.
J Virol ; 77(22): 12057-66, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14581542

RESUMO

Macrophagetropic R5 human immunodeficiency virus type 1 (HIV-1) isolates often evolve into dualtropic R5X4 variants during disease progression. The structural basis for CCR5 coreceptor function has been studied in a limited number of prototype strains and suggests that R5 and R5X4 Envs interact differently with CCR5. However, differences between unrelated viruses may reflect strain-specific factors and do not necessarily represent changes resulting from R5 to R5X4 evolution of a virus in vivo. Here we addressed CCR5 domains involved in fusion for a large set of closely related yet functionally distinct variants within a primary isolate swarm, employing R5 and R5X4 Envs derived from the HIV-1 89.6(PI) quasispecies. R5 variants of 89.6(PI) could fuse using either N-terminal or extracellular loop CCR5 sequences in the context of CCR5/CXCR2 chimeras, similar to the unrelated R5 strain JRFL, but R5X4 variants of 89.6(PI) were highly dependent on the CCR5 N terminus. Similarly, R5 89.6(PI) variants and isolate JRFL tolerated N-terminal CCR5 deletions, but fusion by most R5X4 variants was markedly impaired. R5 89.6(PI) Envs also tolerated multiple extracellular domain substitutions, while R5X4 variants did not. In contrast to CCR5 use, fusion by R5X4 variants of 89.6(PI) was largely independent of the CXCR4 N-terminal region. Thus, R5 and R5X4 species from a single swarm differ in how they interact with CCR5. These results suggest that R5 Envs possess a highly plastic capacity to interact with multiple CCR5 regions and support the concept that viral evolution in vivo results from the emergence of R5X4 variants with the capacity to use the CXCR4 extracellular loops but demonstrate less-flexible interactions with CCR5 that are strongly dependent on the N-terminal region.


Assuntos
Produtos do Gene env/genética , HIV-1/fisiologia , Mutação , Receptores CCR5/química , HIV-1/genética , Humanos , Receptores CCR5/fisiologia , Receptores CXCR4/química , Receptores CXCR4/fisiologia , Receptores de Interleucina-8B/química , Relação Estrutura-Atividade
14.
Clin Diagn Lab Immunol ; 9(1): 138-43, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11777843

RESUMO

We have applied a newly developed real-time reverse transcriptase (RT) PCR (RT-PCR) assay for quantification of substance P (SP) mRNA expression (the SP real-time RT-PCR assay) in human blood monocyte-derived macrophages, peripheral blood lymphocytes, and microglia isolated from fetal brain. The SP real-time RT-PCR assay had a sensitivity of 60 mRNA copies, with a dynamic range of detection between 60 and 600,000 copies of the SP gene transcript per reaction mixture. The coefficient of variation of the threshold cycle number between the SP real-time RT-PCR assays was less than 1.16%. This assay with an SP-specific primer pair efficiently recognizes all four isoforms of preprotachykinin A (the SP precursor) gene transcripts. In order to use this assay to measure the levels of SP mRNA in the human immune cells quantitatively, we designed a specific probe (molecular beacon) derived from exon 3 of the SP gene. We demonstrated that the real-time RT-PCR quantitatively detected SP mRNA in the human immune cells, among which the microglia isolated from fetal brain had the highest levels of SP mRNA. The SP real-time PCR assay yielded reproducible data, as the intra-assay variation was less than 1%. Thus, it is feasible to apply the real-time RT-PCR assay for quantification of SP mRNA levels in human immune cells, as well as in other nonneuronal cells. Since SP is a major modulator of neuroimmunoregulation, this assay has the potential for widespread application for basic and clinical investigations.


Assuntos
RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Substância P/genética , Adulto , Humanos , Linfócitos/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Pessoa de Meia-Idade , Precursores de Proteínas/genética , Sensibilidade e Especificidade , Taquicininas/genética
15.
Mol Ther ; 5(1): 33-41, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11786043

RESUMO

Compared with single agents, combination antilentiviral pharmacotherapy targets multiple HIV-1 functions simultaneously, maximizing efficacy and decreasing chances of escape mutations. Combination genetic therapy could theoretically enhance efficacy similarly, but delivery of even single genes to high percentages of hematopoietic cells or their derivatives has proven problematic. Because of their high efficiency of gene delivery, we tested recombinant SV40-derived vectors (rSV40s) for this purpose. We made six rSV40s, each carrying a different transgene that targeted a different lentiviral function. We tested the ability of these constructs, individually and in double and triple combinations, to protect SupT1 human T lymphoma cells from HIV-1 challenge. Single chain antibodies (SFv) against CXCR4 and against HIV-1 reverse transcriptase (RT) and integrase (IN) were used, as were polymeric TAR decoys (PolyTAR) and a dominant-negative mutant of HIV-1 Rev (RevM10). Immunostaining showed that virtually all doubly treated cells expressed both transgenes. All transgenes individually protected from HIV-1 but, except for anti-CXCR4 SFv, their effectiveness diminished as challenge doses increased from 40 through 2500 tissue culture infectious dose(50) (TCID(50))/10(6) cells. However, all combinations of transgenes protected target cells better than individual transgenes, even from the highest challenge doses. Thus, combination gene therapies may inhibit HIV-1 better than single agents, and rSV40s may facilitate delivery of multigene therapeutics.


Assuntos
Terapia Genética/métodos , HIV-1 , Vetores Genéticos , HIV-1/genética , Humanos , Linfoma de Células T/virologia , Vírus 40 dos Símios/genética , Transgenes , Células Tumorais Cultivadas
16.
J Virol ; 76(15): 7874-82, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12097601

RESUMO

Pharmacological cyclin-dependent kinase (cdk) inhibitors (PCIs) block replication of several viruses, including herpes simplex virus type 1 (HSV-1) and human immunodeficiency virus type 1 (HIV-1). Yet, these antiviral effects could result from inhibition of either cellular cdks or viral enzymes. For example, in addition to cellular cdks, PCIs could inhibit any of the herpesvirus-encoded kinases, DNA replication proteins, or proteins involved in nucleotide metabolism. To address this issue, we asked whether purine-derived PCIs (P-PCIs) inhibit HSV and HIV-1 replication by targeting cellular or viral proteins. P-PCIs inhibited replication of HSV-1 and -2 and HIV-1, which require cellular cdks to replicate, but not vaccinia virus or lymphocytic choriomeningitis virus, which are not known to require cdks to replicate. P-PCIs also inhibited strains of HSV-1 and HIV-1 that are resistant to conventional antiviral drugs, which target viral proteins. In addition, the anti-HSV effects of P-PCIs and a conventional antiherpesvirus drug, acyclovir, were additive, demonstrating that the two drugs act by distinct mechanisms. Lastly, the spectrum of proteins that bound to P-PCIs in extracts of mock- and HSV-infected cells was the same. Based on these observations, we conclude that P-PCIs inhibit virus replication by targeting cellular, not viral, proteins.


Assuntos
Adenina/análogos & derivados , Antivirais/farmacologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Simplexvirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Adenina/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , Quinases Ciclina-Dependentes/metabolismo , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Purinas/farmacologia , Roscovitina , Simplexvirus/genética , Simplexvirus/fisiologia , Células Vero , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA