RESUMO
Cyantraniliprole (CY), an anthranilic diamide insecticide widely used in grape farming for controlling various sucking pests, poses ecological concerns, particularly when applied as soil drenching due to the formation of more toxic and persistent metabolites. This study established the dissipation and degradation mechanisms of CY in grape rhizosphere soil using high-resolution Orbitrap-LC/MS analysis. The persistence of CY residues beyond 60 days was observed, with dissipation following biphasic first + first-order kinetics and a half-life of 15 to 21 days. The degradation mechanism of CY in the soil was elucidated, with identified metabolites such as IN-J9Z38, IN-JCZ38, IN-N7B69, and IN-QKV54. Notably, CY was found to predominantly convert to the highly persistent metabolite IN-J9Z38, raising environmental concerns. The impact of CY residues on soil enzyme activity was investigated, revealing a negative effect on dehydrogenase, alkaline phosphatase, and acid phosphatase activity, indicating significant implications for phosphorous mineralization and soil health. Furthermore, bacterial isolates were obtained from CY-enriched soil, with five isolates (CY3, CY4, CY9, CY11, and CY20) demonstrating substantial degradation potential, ranging from 66 to 92% of CY residues. These results indicate that the identified bacteria hold potential for commercial use in addressing pesticide residue contamination in soil through bioremediation techniques.
Assuntos
Pirazóis , Solo , ortoaminobenzoatos , Biodegradação Ambiental , Bactérias/genéticaRESUMO
The mobile phones have become an inevitable part of life for communication everywhere. Hospital-acquired infections are causing increased morbidity and mortality of hospitalized patients. After getting approval from the institutional review board, a total of 300 samples from mobile phones and dominant hands of resident doctors, nurses, and support staff working in neonatal intensive care unit, pediatric intensive care unit, intensive care unit, and emergency ward were tested according to standard guidelines for culture. Of 300 samples tested, 144 (96%) mobile phones and 145 (96.66%) dominant hands showed contamination with one or more types of microorganisms. Monomicrobial organisms were recovered from 247 samples and polymicrobial organisms were isolated from 42 samples. Mobile phones and hands of helath care workers serve as a potential reservoir for hospital acquired infections as multi-drug resistant pathogenic bacteria as well as normal flora of skin were recovered.
Assuntos
Telefone Celular , Mãos/microbiologia , Microbiota , Centros de Atenção Terciária/estatística & dados numéricos , Infecção Hospitalar/etiologia , Infecção Hospitalar/microbiologia , Contaminação de Equipamentos/estatística & dados numéricos , Humanos , Índia , Unidades de Terapia Intensiva/estatística & dados numéricos , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Recursos Humanos em Hospital/estatística & dados numéricosRESUMO
Species mislabeling of commercial loliginidae squid can undermine important conservation efforts and prevent consumers from making informed decisions. A comprehensive lipidomic fingerprint of Uroteuthis singhalensis, Uroteuthis edulis, and Uroteuthis duvauceli rings was established using high-resolution mass spectrometry-based lipidomics and chemoinformatics analysis. The principal component analysis showed a clear separation of sample groups, with R2X and Q2 values of 0.97 and 0.85 for ESI+ and 0.96 and 0.86 for ESI-, indicating a good model fit. The optimized OPLS-DA and PLS-DA models could discriminate the species identity of validation samples with 100 % accuracy. A total of 67 and 90 lipid molecules were putatively identified as biomarkers in ESI+ and ESI-, respectively. Identified lipids, including PC(40:6), C14 sphingomyelin, PS(O-36:0), and PE(41:4), played an important role in species discrimination. For the first time, this study provides a detailed lipidomics profile of commercially important loliginidae squid and establishes a faster workflow for species authentication.
Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , QuimioinformáticaRESUMO
Matrix effect (ME) is unavoidable in multiresidue pesticide analysis, even when using highly advanced instruments, and differences in MEs can affect residue analytical accuracy due to pomegranate cultivar composition variations. However, literature to support this claim is limited.The study used GC-MS/MS and LC-MS/MS to investigate four different Indian pomegranate cultivar extracts and their MEs on multi-class pesticides.The whole fruit and arils of all cultivarswere tested for 22 GC-amenable and 21 LC-amenable pesticides. Principal component analysis of the data confirmed that each cultivar had unique MEs for each pesticide.The majority of pesticides showed acute variations in recovery rates with 95% confidence, while GC-MS/MS-amenablepesticides showed more variation. Although extrapolative dilution reduced the influence of MEs on analytical accuracy, a generalized matrix-matching for all cultivars was not possible to achieve.To reduce the variability in MEs, it is recommended that a cultivar-specific matrix-matched standard should be used.
Assuntos
Resíduos de Praguicidas , Praguicidas , Punica granatum , Espectrometria de Massas em Tandem , Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida , Frutas/química , Resíduos de Praguicidas/análiseRESUMO
Eremophilanes are a large group of "sesquiterpenes" produced by plants and fungi, with more than 180 compounds being known in fungi alone. Many of these compounds are phytotoxic, antimicrobial, anticancer and immunomodulators, and hence are of great economic values. Acremeremophilanes A to O have earlier been reported in a marine isolate of Acremonium sp. We report here the presence of Acremeremophilane I, G, K, N, and O, in a plant beneficial fungus Trichoderma virens, in a strain-specific manner. We also describe a novel, P strain-specific polyketide synthase (PKS) gene cluster in T. virens. This gene cluster, designated amm cluster, is absent in the genome of a Q strain of T. virens, and in other Trichoderma spp.; instead, a near identical cluster is present in the genome of the toxic mold Stachybotrys chartarum. Using gene knockout, we provide evidence that acremeremophilanes are biosynthesized via a polyketide route, and not via the mevalonate/terpene synthesis route as believed. We propose here that the 10-carbon skeleton is a product of polyketide synthase, to which a five-carbon isoprene unit is added by a prenyl transferase (PT), a gene for which is present next to the PKS gene in the genome. Based on this evidence, we propose that at least some of the eremophilanes classified in literature as sesquiterpenes (catalyzed by terpene cyclase) are actually meroterpenes (catalyzed by PKSs and PTs), and that the core moiety is not a sesquiterpene, but a hybrid polyketide/isoprene unit. IMPORTANCE The article contradicts the established fact that acremeremophilane metabolites produced by fungi are sesquiterpenes; instead, our findings suggest that at least some of these well-studied metabolites are of polyketide origin. Acremeremophilane metabolites are of medicinal significance, and the present findings have implications for the metabolic engineering of these metabolites and also their overproduction in microbial cell factories.