Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 191(10): 622, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31494726

RESUMO

Bioleaching of heavy metals from industrial contaminated soil using metallotolerant fungi is the most efficient, cost-effective, and eco-friendly technique. In the current study, the contaminated soil samples from Hattar Industrial Estate revealed a total lead (Pb) and mercury (Hg) concentration of 170.90 mg L-1 and 26.66 mg L-1, respectively. Indigenous metallotolerant fungal strains including Aspergillus niger M1, Aspergillus fumigatus M3, Aspergillus terreus M6, and Aspergillus flavus M7 were isolated and identified by pheno- and genotyping. A. fumigatus and A. flavus of soil sample S1 showed higher efficiency for Pb removal (99.20% and 99.30%, respectively), in SDB medium. Likewise, A. niger and A. terreus of soil sample S2 showed higher efficiency for Hg removal (96% and 95.50%, respectively), in YPG medium. Furthermore, the maximum uptake efficiency for Pb removal (8.52 mg g-1) from soil sample S1 was noticed for A. fumigatus in YPG medium, while the highest uptake efficiency (4.23 mg g-1) of A. flavus M2 strain was observed with CYE medium. Similarly, the maximum uptake efficiency of 0.41 mg g-1 and 0.44 mg g-1 for Hg removal from soil sample S2 was found for A. niger and A. terreus strains, respectively, in CYE medium. Thus, in order to address the major issue of industrial waste pollution, indigenous fungal strains A. fumigatus (M1) and A. terreus (M7), isolated in this study, could be used (ex situ or in situ) to remediate soils contaminated with Pb and Hg.


Assuntos
Aspergillus/metabolismo , Chumbo/metabolismo , Mercúrio/metabolismo , Metais Pesados/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Aspergillus/classificação , Aspergillus/genética , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Genótipo , Resíduos Industriais , Chumbo/análise , Mercúrio/análise , Metais Pesados/análise , Fenótipo , Poluentes do Solo/análise
2.
Environ Monit Assess ; 191(9): 585, 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31440913

RESUMO

Remediation of heavy metals, other than microbial bioleaching method, is expensive and unsuitable for large contaminated areas. The current study was aimed to isolate, identify, and test the potential of indigenous fungal strains for heavy metal removal from contaminated soil. A total of three metallotolerant fungal strains, i.e., Aspergillus niger (M1DGR), Aspergillus fumigatus (M3Ai), and Penicillium rubens (M2Aii), were isolated and identified by phenotyping and genotyping from heavy metal-contaminated soil of  Hattar Industrial Estate, Pakistan. A. niger was found to be the most successful strain for the removal of heavy metals from the contaminated soil with maximum bioaccumulation efficiency of 98% (Cd) and 43% (Cr). In contrast, A. fumigatus showed comparatively low but still considerable bioleaching potential, i.e., 79% and 69% for Cd and Cr removal, respectively. Maximum metal uptake efficiency, i.e., 0.580 mg g-1 and 0.152 mg g-1 by A. niger strain was noticed for Cd and Cr with Czapek yeast extract (CYE) and Sabouraud dextrose broth (SDB) media, respectively. A. fumigatus (M3Ai) exhibited the maximum bioleaching capacity (0.40 mg g-1) for Cr with CYE medium. The results reveal that A. niger M1DGR and A. fumigatus M3Ai could be used to develop new strategies to remediate soil contaminated with heavy metals (Cd and Cr) through either in situ or ex situ mycoremediation.


Assuntos
Aspergillus flavus/metabolismo , Aspergillus fumigatus/metabolismo , Cádmio/análise , Cromo/análise , Penicillium/metabolismo , Poluentes do Solo/análise , Biodegradação Ambiental , Monitoramento Ambiental , Poluição Ambiental/análise , Paquistão , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA