Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701232

RESUMO

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Assuntos
Carbono , Clima , Microplásticos , Nitrogênio , Solo , Nitrogênio/análise , Solo/química , Carbono/análise , Poluentes do Solo/análise
2.
Environ Res ; 252(Pt 2): 118945, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631466

RESUMO

Microplastics pollution and climate change are primarily investigated in isolation, despite their joint threat to the environment. Greenhouse gases (GHGs) are emitted during: the production of plastic and rubber, the use and degradation of plastic, and after contamination of environment. This is the first meta-analysis to assess underlying causal relationships and the influence of likely mediators. We included 60 peer-reviewed empirical studies; estimating GHGs emissions effect size and global warming potential (GWP), according to key microplastics properties and soil conditions. We investigated interrelationships with microbe functional gene expression. Overall, microplastics contamination was associated with increased GHGs emissions, with the strongest effect (60%) on CH4 emissions. Polylactic-acid caused 32% higher CO2 emissions, but only 1% of total GWP. Phenol-formaldehyde had the greatest (175%) GWP via 182% increased N2O emissions. Only polystyrene resulted in reduced GWP by 50%, due to N2O mitigation. Polyethylene caused the maximum (60%) CH4 emissions. Shapes of microplastics differed in GWP: fiber had the greatest GWP (66%) whereas beads reduced GWP by 53%. Films substantially increased emissions of all GHGs: 14% CO2, 10% N2O and 60% CH4. Larger-sized microplastics had higher GWP (125%) due to their 9% CO2 and 63% N2O emissions. GWP rose sharply if soil microplastics content exceeded 0.5%. Higher CO2 emissions, ranging from 4% to 20%, arose from soil which was either fine, saturated or had high-carbon content. Higher N2O emissions, ranging from 10% to 95%, arose from soils that had either medium texture, saturated water content or low-carbon content. Both CO2 and N2O emissions were 43%-56% higher from soils with neutral pH. We conclude that microplastics contamination can cause raised GHGs emissions, posing a risk of exacerbating climate-change. We show clear links between GHGs emissions, microplastics properties, soil characteristics and soil microbe functional gene expression. Further research is needed regarding underlying mechanisms and processes.


Assuntos
Aquecimento Global , Gases de Efeito Estufa , Microplásticos , Poluentes do Solo , Microplásticos/análise , Gases de Efeito Estufa/análise , Poluentes do Solo/análise , Mudança Climática , Solo/química , Poluentes Atmosféricos/análise
3.
J Environ Manage ; 367: 121927, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079497

RESUMO

Given the significance of nitrogen (N) as the most constraining nutrient in agro-ecosystems, it is crucial to develop an updated model for N fertilizers management to achieve higher crop yields while minimizing the negative impacts on the environment. Coated urea is touted as one of the most important controlled-release N fertilizers used in agriculture to reduce cropland emissions and improve nitrogen use efficiency (NUE) for optimal crop yields. The sustainability of coated urea depends on the trade-offs between crop productivity, NUE and greenhouse gas emissions (CO2, CH4 and N2O); however, role of various agro-edaphic factors in influencing these trade-offs remains unclear. To determine the effects of soil properties, climatic conditions, experimental conditions, and type of coated urea on greenhouse gas emissions, NH3 losses, crop productivity, and NUE, we conducted a meta-analysis using data from 76 peer-reviewed studies. Our results showed that the application of coated urea under field conditions contributed to a greater reduction in N2O emissions (-48.67%) and higher NUE (58.72%), but crop yields were not significant. Across different climate regions, subtropical monsoon climate showed a perceptible mitigation for CO2, CH4andNH3 (-78.38%; -83.33; -27.46%), while temperate climate reduced N2O emissions by -70.36%. For different crops, only rice demonstrated reduction in CO2, CH4, N2O and NH3 losses. On the other hand, our findings revealed a mitigating trade-off between CO2 and CH4 emissions on medium-textured soils and N2O emissions on fine-textured soils. A significant reduction in N2O and NH3 losses was evident when coated urea was applied to soils with a pH > 5.5. Interestingly, application of coated urea to soils with higher C/N ratios increased NH3 losses but showed a noticeable N2O reduction. We found that polymer-coated urea reduced CH4andN2O emissions and NH3 losses at the expense of higher CO2 emissions. Moreover, application of a lower dose of coated urea (0-100 kg N ha-1) enhanced CO2 and CH4 mitigation, while N2O mitigation increased linearly with increasing dose of coated urea. Most importantly, our results showed that the application of coated urea leads to a large mismatch between NUE, crop yields and greenhouse gas mitigation. By and large, the application of coated urea did not correspond with higher crop yields despite significant reduction in the emissions and improved NUE. Overall, these results suggest that site-specific agro-edaphic conditions should be considered when applying coated urea to reduce these emissions and N volatilization losses for increasing NUE and crop yields.

4.
Curr Issues Mol Biol ; 45(2): 1349-1372, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36826033

RESUMO

Bottle gourd, a common vegetable in the human diet, has been valued for its medicinal and energetic properties. In this experiment, the time-resolved analysis of the changes in the proteins' electrophoretic patterning of the seed development at different crossing periods was studied in bottle gourd using label-free quantitative proteomics. Hybrid HBGH-35 had the highest observed protein levels at the 4th week of the crossing period (F4) compared to the parental lines, viz. G-2 (M) and Pusa Naveen (F). The crossing period is significantly correlated with grain filling and reserve accumulation. The observed protein expression profile after storage was related to seed maturation and grain filling in bottle gourds. A total of 2517 proteins were identified in differentially treated bottle gourd fruits, and 372 proteins were differentially expressed between different crossing periods. Proteins related to carbohydrate and energy metabolism, anthocyanin biosynthesis, cell stress response, and fruit firmness were characterized and quantified. Some proteins were involved in the development, while others were engaged in desiccation and the early grain-filling stage. F4 was distinguished by an increase in the accumulation of low molecular weight proteins and enzymes such as amylase, a serine protease, and trypsin inhibitors. The seed vigor also followed similar patterns of differential expression of seed storage proteins. Our findings defined a new window during seed production, which showed that at F4, maximum photosynthetic assimilates accumulated, resulting in an enhanced source-sink relationship and improved seed production. Our study attempts to observe the protein expression profiling pattern under different crossing periods using label-free quantitative proteomics in bottle gourd. It will facilitate future detailed investigation of the protein associated with quality traits and the agronomic importance of bottle gourd through selective breeding programs.

5.
Environ Res ; 231(Pt 1): 115941, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100366

RESUMO

Endocrine-disrupting chemicals (EDCs) are of interest in human physiopathology and have been extensively studied for their effects on the endocrine system. Research also focuses on the environmental impact of EDCs, including pesticides and engineered nanoparticles, and their toxicity to organisms. Green nanofabrication has surfaced as an environmentally conscious and sustainable approach to manufacture antimicrobial agents that can effectively manage phytopathogens. In this study, we examined the current understanding of the pathogenic activities of Azadirachta indica aqueous formulated green synthesized copper oxide nanoparticles (CuONPs) against phytopathogens. The CuONPs were analyzed and studied using a range of analytical and microscopic techniques, such as UV-visible spectrophotometer, Transmission electron microscope (TEM), Scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FTIR). The XRD spectral results revealed that the particles had a high crystal size, with an average size ranging from 40 to 100 nm. TEM and SEM images were utilized to verify the size and shape of the CuONPs, revealing that they varied between 20 and 80 nm. The existence of potential functional molecules involved in the reduction of the nanoparticles was confirmed by FTIR spectra and UV analysis. Biogenically synthesized CuONPs revealed significantly enhanced antimicrobial activities at 100 mg/L concentration in vitro by the biological method. The synthesized CuONPs at 500 µg/ml had a strong antioxidant activity which was examined through the free radicle scavenging method. Overall results of the green synthesized CuONPs have demonstrated significant synergetic effects in biological activities which can play a crucial impact in plant pathology against numerous phytopathogens.


Assuntos
Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cobre/toxicidade , Cobre/química , Extratos Vegetais/química , Óxidos , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química
6.
Physiol Plant ; 174(6): e13806, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271716

RESUMO

Drought stress is a serious issue that affects agricultural productivity all around the world. Several researchers have reported using plant growth-promoting endophytic bacteria to enhance the drought resistance of crops. However, how endophytic bacteria and endophytic fungi are effectively stimulating plant growth under drought stress is still largely unknown. In this article, a global meta-analysis was undertaken to compare the plant growth-promoting effects of bacterial and fungal endophytes and to identify the processes by which both types of endophytes stimulate plant growth under drought stress. Moreover, this meta-analysis enlightens how plant growth promotion varies across crop types (C3 vs. C4 and monocot vs. dicot), experiment types (in vitro vs. pots vs. field), and the inoculation methods (seed vs. seedling). Specifically, this research included 75 peer-reviewed publications, 170 experiments, 20 distinct bacterial genera, and eight fungal classes. On average, both endophytic bacterial and fungal inoculation increased plant dry and fresh biomass under drought stress. The effect of endophytic bacterial inoculation on plant dry biomass, shoot dry biomass, root length, photosynthetic rate, leaf area, and gibberellins productions were at least two times greater than that of fungal inoculation. In addition, under drought stress, bacterial inoculation increased the proline content of C4 plants. Overall, the findings of this meta-analysis indicate that both endophytic bacterial and fungal inoculation of plants is beneficial under drought conditions, but the extent of benefit is higher with endophytic bacteria inoculation but it varies across crop type, experiment type, and inoculation method.


Assuntos
Secas , Estresse Fisiológico , Desenvolvimento Vegetal , Endófitos , Plantas/microbiologia , Bactérias , Fungos
7.
Environ Res ; 214(Pt 2): 113827, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863445

RESUMO

Adsorption of lead as Pb(II) using biochar is an environmentally sustainable approach to remediate this kind of pollution affecting wastewater. In this study, rice straw biochar (BC) was modified by combination with nano-hydroxy-apatite (HAP), resulting in a material designated as BC@nHAP, with enhanced adsorption performance. Based on Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses, it was evidenced that, after modification, HAP greatly enhanced surface functional groups (i.e., -COOH and/or -OH) of raw biochar's surface. Batch tests showed that the maximum sorption capacity of BC (63.03 mg g-1) was improved due to the modification, reaching 335.88 mg g-1 in BC@nHAP. Pseudo-second order (PSO) kinetics fitted well the adsorption data (R2 = 0.99), as well as the Langmuir isotherm model (showing an adsorption value of 335.88 mg g-1 for qe). The results of thermodynamic calculations showed that the adsorption was primarily governed by chemisorption process. FTIR spectroscopy and XPS spectrum after adsorption further confirmed that the adsorption mechanisms were ion exchange with Pb2+ and surface complexation by -OH and -COOH. In addition, BC@nHAP revealed a brilliant regeneration capability. The maximum adsorption capacity by BC@nHAP was higher than that of raw biochar or other previously reported adsorbents. Therefore, BC@nHAP could be seen as a new sorbent material with high potential for real-scale heavy metal removal from wastewater, and specifically as a capable candidate new sorbent for Pb(II) removal from wastewater, which has clear implications as regard preservation of environmental quality and public health.


Assuntos
Chumbo , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Durapatita , Cinética , Águas Residuárias , Água/química , Poluentes Químicos da Água/análise
8.
Ecotoxicol Environ Saf ; 234: 113385, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278995

RESUMO

In semi-arid regions, post-restoration vegetation recovery on abandoned agricultural lands often fails due to inherently low organic matter content and poor soil fertility conditions, including phosphorus (P). As such, amending these soils with controlled release P fertilizer, especially with suitable P solubilizing bacteria (PSB) may promote plant growth and productivity by stimulating biological P fertility. To this aim, a pot study was performed to evaluate the agronomic potential of maize and soil biological P pools, using encapsulated (ENRP) and non-encapsulated (NRP) nano-rock phosphate as the P fertilizer source, on reclaimed agricultural soil in the presence and absence of PSB inoculant. The experiment was setup following a 3 × 2 factorial arrangement with four replicates. Without PSB, NRP treatment showed marginal positive effects on plant growth, P nutrition and P use efficiency (PUE) compared to control treatment. Although larger gains with NRP treatment were more noticeable under PSB inoculation, ENRP was the most convenient slow-release P fertilizer, increasing plant growth, P nutrition and grain yield compared to all treatments. Importantly, PSB inoculation with ENRP resulted in significantly higher increase in soil CaCl2-P (8.91 mg P kg soil-1), citrate-P (26.98 mg P kg soil-1), enzyme-P (18.98 mg P kg soil-1), resin-P (11.41 mg P kg soil-1), and microbial-P (18.94 mg P kg soil-1), when compared to all treatment combinations. Although a decrease in soil HCl-P content was observed with both types of P fertilizer, significant differences were found only with PSB inoculation. A significant increase in soil biological P pools could be due to the higher specific area and crystalline structure of nano materials, providing increased number of active sites for PSB activity in the presence of biobased encapsulated shell. Furthermore, the increase in PSB abundance, higher root carboxylate secretions, and decreased rhizosphere pH in response to nano-structured P fertilizer, implies greater extension of rhizosphere promoting greater P mobilization and/or solubilization, particularly under PSB inoculated conditions. We conclude that cropping potential of abandoned agricultural lands can be enhanced by the use of nano-rock phosphate in combination with PSB inoculant, establishing a favorable micro-environment for higher plant growth and biochemical P fertility.

9.
BMC Plant Biol ; 21(1): 413, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503442

RESUMO

BACKGROUND: In plants, basic leucine zipper transcription factors (TFs) play important roles in multiple biological processes such as anthesis, fruit growth & development and stress responses. However, systematic investigation and characterization of bZIP-TFs remain unclear in Chinese white pear. Chinese white pear is a fruit crop that has important nutritional and medicinal values. RESULTS: In this study, 62 bZIP genes were comprehensively identified from Chinese Pear, and 54 genes were distributed among 17 chromosomes. Frequent whole-genome duplication (WGD) and dispersed duplication (DSD) were the major driving forces underlying the bZIP gene family in Chinese white pear. bZIP-TFs are classified into 13 subfamilies according to the phylogenetic tree. Subsequently, purifying selection plays an important role in the evolution process of PbbZIPs. Synteny analysis of bZIP genes revealed that 196 orthologous gene pairs were identified between Pyrus bretschneideri, Fragaria vesca, Prunus mume, and Prunus persica. Moreover, cis-elements that respond to various stresses and hormones were found on the promoter regions of PbbZIP, which were induced by stimuli. Gene structure (intron/exon) and different compositions of motifs revealed that functional divergence among subfamilies. Expression pattern of PbbZIP genes differential expressed under hormonal treatment abscisic acid, salicylic acid, and methyl jasmonate  in pear fruits by real-time qRT-PCR. CONCLUSIONS: Collectively, a systematic analysis of gene structure, motif composition, subcellular localization, synteny analysis, and calculation of synonymous (Ks) and non-synonymous (Ka) was performed in Chinese white pear. Sixty-two bZIP-TFs in Chinese pear were identified, and their expression profiles were comprehensively analyzed under ABA, SA, and MeJa hormones, which respond to multiple abiotic stresses and fruit growth and development. PbbZIP gene occurred through Whole-genome duplication and dispersed duplication events. These results provide a basic framework for further elucidating the biological function characterizations under multiple developmental stages and abiotic stress responses.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Plantas/genética , Pyrus/genética , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromossomos de Plantas , Éxons , Fragaria/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Íntrons , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Pyrus/efeitos dos fármacos , Salicilatos/farmacologia , Ácido Salicílico/farmacologia , Sintenia
10.
Physiol Plant ; 172(2): 820-846, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33159319

RESUMO

Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.


Assuntos
Melatonina , Animais , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Plantas , Estresse Fisiológico
11.
Environ Res ; 201: 111518, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34129867

RESUMO

The exploration and rational design of easily separable and highly efficient sorbents with the sufficient capability of retaining radioactive and toxic uranium U(VI) is paramount. In this study, a hydroxyapatite (HAP) biochar nanocomposite (BR/HAP) was successfully fabricated from rice straw biochar (BR), to be used as a new and efficient adsorbent for removing U(VI) from aqueous solution. Both BR and the BR/HAP composite were characterized via Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) techniques. Batch test results showed that BR/HAP exhibited remarkably higher adsorption capacity than the raw BR. A pseudo-second order kinetic model thoroughly explained the adsorption kinetics, providing the maximum U(VI) adsorption capacities (qe) of 110.56 mg g-1 (R2 = 0.98) and 428.25 mg g-1 (R2 = 0.99), for BR and BR/HAP, respectively, which was indicative of the rate-limited sorption via diffusion or surface complexation after rapid initial adsorption steps. The Langmuir isotherm model fitted the experimental data to accurately simulate the adsorption of U(VI) onto BR and BR/HAP (R2 = 0.97 and R2 = 0.99). The thermodynamic results showed negative values for ΔG°, clearly indicating that the reaction was spontaneous, as well as positive values for ΔH° (11.04 kJ mol-1 and 28.86 kJ mol-1, respectively) and ΔS° (88.97 kJ mol-1 K-1, and 183.42 kJ mol-1 K-1), making clear the endothermic nature of U(VI) adsorption onto both sorbents, with an increase in randomness at a molecular level. FTIR spectroscopy and XPS spectrum further confirmed that the primary mechanisms were ion exchange with UO22+ and surface complexion by -OH and -COOH. In addition, BR/HAP showed an excellent reusability, making it a promising candidate as a new sorbent for U(VI) removal from wastewater. In view of that, it would be interesting to perform future research to explore practical implications of this sorbent material regarding protection from environmental and public health issues related to that pollutant.


Assuntos
Nanocompostos , Urânio , Adsorção , Carvão Vegetal , Durapatita , Urânio/análise
12.
Environ Res ; 196: 110370, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33164811

RESUMO

Different root exudations can modify the bioavailability of persistent organic pollutants (POPs). Among these exudations, the low molecular weight organic acids play an imperative role in this process. The study was conducted to analyze the effect of phenanthrene (PHE) stress on root exudation variations and changes in its chemical composition in ten urban greening tree species, namely Loropetalum chinense, Gardenia ellis, Photinia fraseri, Ligustrum japonicum, Rhododendron simsii, Osmanthus fragrans, Gardenia jasminoides, Buxus sinica, Camellia sasanqua, and Euonymus japonicas. The experiment was carried out in three PHE concentration treatments (0 mg kg-1 (CK), 200 mg kg-1 (PHEL), 2000 mg kg-1 (PHEH)). The root exudates were collected and analyzed by GC-MS method. In total, 673 compounds were identified either with high or low abundance among all species and treatments. Compounds identified in CK, PHEL, and PHEH were 240, 180, and 256, respectively. The results illustrated that carbohydrates, phenols, and esters were the dominant compounds, accounted for more than 92%. Principal component analysis depicted that tree species grown in PHEH showed obvious alteration in compounds of root exudation, whereas little difference was noticed between PHEL and CK. Phenols (80%) were the most abundant, while nitriles contributed a small portion. Moreover, among all species, R. simsii released the maximum number of compounds, and L. japonicum released the least number of compounds accounting for 89 and 46, respectively. The results achieved here to illustrate that plant type, and PHE stress can significantly change the concentrations and species of root exudates. This study provides the scientific reference for understanding the phenanthrene responsive changes in root exudates and phytoremediation of polycyclic aromatic hydrocarbons (PAHs), as well as a screening of urban greening tree species.


Assuntos
Fenantrenos , Poluentes do Solo , Biodegradação Ambiental , Exsudatos e Transudatos , Metabolômica , Raízes de Plantas , Árvores
13.
Environ Res ; 196: 110427, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33221307

RESUMO

Interior settled dust is one of the greatest threats of potentially toxic metal(oid)s (PTMs) exposure to the children, especially in the school environment. Therefore, it is more worthy of having in-depth knowledge of compositional characteristics of school dust. Forty schools were selected of Lahore city for dust sampling. The school dust was analyzed to determine the PTMs (As, Cd, Cr, Cu, Ge, Mo, Ni, Pb, Sb, Sn, Sr, V, and Zn) concentrations using ICP-MS. The morphological characteristics, PTMs speciation, and mineralogy of school dust were examined using SEM with EDS, XPS, and XRD, respectively. Moreover, the geo-accumulation index (Igeo), potential ecological risk index (PERI), and multivariate statistical analysis were employed to assess the pollution levels, ecological risk, and source identification of PTMs, respectively. The Igeo indicated a heavily-extreme pollution level of Cd (Igeo = 4.92), moderate-heavy pollution of Zn (Igeo = 3.22), and Pb (Igeo = 2.78), and slight-moderate pollution of Cr (Igeo = 1.62), and Cu (Igeo = 1.53). The ecological risk has been found extremely high for Cd and moderately high for Pb and As, while potential ecological risk found extremely high posed by cumulatively all selected PTMs. Multivariate statistical analysis showed that sources of PTMs comprise of natural processes as well as several anthropogenic processes like vehicular emissions, agricultural and industrial activities. The SEM, XRD, and XPS analyses demonstrated the presence of airborne particles and PTMs containing minerals with several toxic chemical species in school dust. This study can help to develop strategies to reduce school indoor pollution and hence to establish an eco-friendly learning environment for children.


Assuntos
Poeira , Metais Pesados , Criança , China , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Paquistão , Medição de Risco , Instituições Acadêmicas
14.
Environ Res ; 202: 111789, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333013

RESUMO

Greenhouse gaseous (GHGs) emissions from cropland soils are one of the major contributors to global warming. However, the extent and pattern of these climatic breakdowns are usally determined by the management practices in-place. The use of biochar on cropland soils holds a great promise for increasing the overall crop productivity. Nevertheless, biochar application to agricultural soils has grown in popularity as a strategy to off-set the negative feedback associated with agriculture GHGs emissions, i.e., CO2 (carbon dioxide), CH4 (methane), and N2O (nitrous oxide). Despite increasing efforts to uncover the potential of biochar to mitigate the farmland GHGs effects, there has been little synthesis of how different types of biochar affect GHGs fluxes from cropland soils under varied experimental conditions. Here, we presented a meta-analysis of the interactions between biochar and GHGs emissions across global cropland soils, with field experiments showing the strongest GHG mitigation potential, i.e. CO2 (RR = -0.108) and CH4 (RR = -0.399). The biochar pyrolysis temperature, feedstock, C: N ratio, and pH were also found to be important factors influencing GHGs emissions. A prominent reduction in N2O (RR = -0.13) and CH4 (RR = -1.035) emissions was observed in neutral soils (pH = 6.6-7.3), whereas acidic soils (pH ≤ 6.5) accounted for the strongest mitigation effect on CO2 compared to N2O and CH4 emissions. We also found that a biochar application rate of 30 t ha-1 was best for mitigating GHGs emissions while achieving optimal crop yield. According to our meta-analysis, maize crop receiving biochar amendment showed a significant mitigation potential for CO2, N2O, and CH4 emissions. On the other hand, the use of biochar had shown significant impact on the global warming potential (GWP) of total GHGs emissions. The current data synthesis takes the lead in analyzing emissions status and mitigation potential for three of the most common GHGs from cropland soils and demonstrates that biochar application can significantly reduce the emissions budget from agriculture.


Assuntos
Gases de Efeito Estufa , Agricultura , Carvão Vegetal , Solo
15.
J Environ Manage ; 292: 112764, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33984639

RESUMO

A novel phosphorus (P) modified biochar (PLBC) was produced by pyrolyzing biomass of the dietic herb Taraxacum mongolicum Hand-Mazz (TMHM) and treating it with monopotassium phosphate (KH2PO4). This phosphorous loaded biochar was then assessed as adsorbent for As(III) removal from contaminated water. In the current research, the adsorbent was characterized before and after P loading by means of SEM-EDX, TEM, FTIR and XRD techniques. It was evidenced that the presence of P on the surface of the biochar (BC) could improve its efficiency to remove As(III) from contaminated environments. Adsorption kinetics were evaluated by performing batch-type experiments at varied times and pH values (5, 7 and 9). The kinetic study revealed that a contact time of 24 h was required to attain equilibrium and the experimental data were best fitted to the pseudo-second-order kinetic model (qe = 17.1 mg g-1). In addition, several batch experiments were conducted with varied arsenic concentrations. During the adsorption tests, the maximum adsorption of As(III) was found at pH 5. The adsorption study further showed that compared to BC, PLBC depicted increased removal of As(III) from contaminated solutions. The adsorption experimental data showed the best fit to the Langmuir isotherm model (with R2 = 0.84), with maximum As(III) adsorption capacity reaching 30.76 mg g-1 for PLBC.


Assuntos
Arsênio , Taraxacum , Poluentes Químicos da Água , Adsorção , Arsênio/análise , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Fósforo , Água
16.
J Environ Manage ; 285: 112170, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607561

RESUMO

Organic amendments (animal manure and biochar) to agricultural soils may enhance soil organic carbon (SOC) contents, improve soil fertility and crop productivity but also contribute to global warming through nitrous oxide (N2O) emission. However, the effects of organic amendments on N2O emissions from agricultural soils seem variable among numerous research studies and remains uncertain. Here, eighty-five publications (peer-reviewed) were selected to perform a meta-analysis study. The results of this meta-analysis study show that the application of animal manure enhanced N2O emissions by 17.7%, whereas, biochar amendment significantly mitigated N2O emissions by 19.7%. Moreover, coarse textured soils increased [lnRR‾ = 182.6%, 95% confidence interval (CI) = 151.4%, 217.7%] N2O emission after animal manure, in contrast, N2O emission mitigated by 7.0% from coarse textured soils after biochar amendment. In addition, this study found that 121-320 kg N ha-1 and ⩽ 30 T ha-1 application rates of animal manure and biochar mitigated N2O emissions by 72.3% and 22.5%, respectively. Soil pH also played a vital role in regulating the N2O emissions after organic amendments. Furthermore, > 10 soil C: N ratios increased N2O emissions by 121.4% and 27.6% after animal and biochar amendments, respectively. Overall, animal manure C: N ratios significantly enhanced N2O emissions, while, biochar C: N ratio had not shown any effect on N2O emissions. Overall, average N2O emission factors (EFs) for animal manure and biochar amendments were 0.46% and -0.08%, respectively. Thus, the results of this meta-analysis study provide scientific evidence about how organic amendments such as animal manure and biochar regulating the N2O emission from agricultural soils.


Assuntos
Esterco , Óxido Nitroso , Agricultura , Animais , Carbono , Carvão Vegetal , Fertilizantes , Óxido Nitroso/análise , Solo
18.
Molecules ; 23(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751599

RESUMO

Sucrose synthase (SS) is a key enzyme involved in sucrose metabolism that is critical in plant growth and development, and particularly quality of the fruit. Sucrose synthase gene families have been identified and characterized in plants various plants such as tobacco, grape, rice, and Arabidopsis. However, there is still lack of detailed information about sucrose synthase gene in pear. In the present study, we performed a systematic analysis of the pear (Pyrus bretschneideri Rehd.) genome and reported 30 sucrose synthase genes. Subsequently, gene structure, phylogenetic relationship, chromosomal localization, gene duplications, promoter regions, collinearity, RNA-Seq data and qRT-PCR were conducted on these sucrose synthase genes. The transcript analysis revealed that 10 PbSSs genes (30%) were especially expressed in pear fruit development. Additionally, qRT-PCR analysis verified the RNA-seq data and shown that PbSS30, PbSS24, and PbSS15 have a potential role in the pear fruit development stages. This study provides important insights into the evolution of sucrose synthase gene family in pear and will provide assistance for further investigation of sucrose synthase genes functions in the process of fruit development, fruit quality and resistance to environmental stresses.


Assuntos
Genes de Plantas , Glucosiltransferases/química , Glucosiltransferases/genética , Família Multigênica , Pyrus/genética , Mapeamento Cromossômico , Sequência Conservada , Mineração de Dados , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Conformação Proteica , Pyrus/classificação , Elementos Reguladores de Transcrição
19.
Sci Total Environ ; 917: 170310, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272081

RESUMO

Global agricultural systems face one of the greatest sustainability challenges: meeting the growing demand for food without leaving a negative environmental footprint. United States (US) and China are the two largest economies and account for 39 % of total global greenhouse gases (GHG) emissions into the atmosphere. No-till is a promising land management option that allows agriculture to better adapt and mitigate climate change effects compared to traditional tillage. However, the efficacy of no-till for mitigating GHG is still debatable. In this meta-analysis, we comprehensively assess the impact of no-till (relative to traditional tillage) on GHG mitigation potential and crop productivity in different agroecological systems and management regimes in the US and China. Overall, no-till in China did not change crop yields, although soil CO2 (8 %) and N2O (12 %) emissions decreased significantly, while soil CH4 emissions increased by 12 %. In contrast to Chinese no-till, a significant improvement in crop yields (up to 12 %) was recorded on US cropland under no-till. Moreover, significant decreases in soil N2O (21 %) and CH4 (12 %) emissions were observed. Of the three cropping systems, only wheat showed significant reduction in CO2, N2O and CH4 emissions in the Chinese no-till system. In the case of US, no-till soybean-rice and maize cropping systems demonstrated significant emission reductions for N2O and CO2, respectively. Interestingly, yields of no-till maize in China and rice in US exceeded those of other no-till cereals. In China, no-till on medium-texture soils resulted in significant reductions in GHG emissions and higher crop yields compared to other soil types. In both countries, the relatively higher crop yields under irrigated versus non-irrigated no-till and the significant yield differences on fine textured soils under US no-till are likely due to the substantial N2O reductions. In summary, crop yield disparities from no-till between China and the US were related to the insignificant effects on controlling CH4 emissions and successfully mitigating N2O, respectively. This study comprehensively demonstrates how cropping system and pedoclimatic conditions influence the relative effectiveness of no-till in both countries.


Assuntos
Gases , Gases de Efeito Estufa , Estados Unidos , Dióxido de Carbono/análise , Óxido Nitroso/análise , Agricultura/métodos , Solo , Grão Comestível/química , China , Metano/análise
20.
Chemosphere ; 350: 141123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185426

RESUMO

Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings.


Assuntos
Poluentes Ambientais , Biodegradação Ambiental , Ecossistema , Resíduos Perigosos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA