Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Chem ; 106: 104484, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268005

RESUMO

Aspergillus fumigatus is one of the main causative agents of invasive aspergillosis, an often-lethal fungal disease that affects immunocompromised individuals. A. fumigatus produces a sialidase that cleaves the nine-carbon carbohydrate Kdn from glycoconjugates. This enzyme plays a critical role in A. fumigatus pathogenicity, and is thus a target for the development of new therapeutics. In order to understand the reactivity of this Kdnase, and to develop a sensitive and selective assay for its catalytic activity we determined whether, like its close structural homolog the excreted sialidase produced by Micromonospora viridifaciens, this enzyme can efficiently hydrolyze thioglycoside substrates. We synthesized a panel of seven aryl 2-thio-d-glycero-α-d-galacto-non-2-ulopyranosonides and measured the activity of the A. fumigatus Kdnase towards these substrates. Four of these substrates were hydrolyzed by the A. fumigatus enzyme, although M. viridifaciens sialidase-catalyzed the hydrolysis of these Kdn thioglycosides with higher catalytic efficiencies (kcat/Km). We also tested an enzyme that was evolved from MvNA to improve its activity against Kdn glycosides (Glycobiology 2020, 30, 325). All three enzymes catalyzed the hydrolysis of the four most reactive Kdn thioglycosides and their second-order rate constants (kcat/Km) display a concave downwards Brønsted plot. The kinetic data, for each enzyme, is consistent with a change in rate-limiting step from CS bond cleavage for thioglycosides in which the pKa of the corresponding aryl thiol is >3.6, to a non-chemical step, which is likely a conformational change, that occurs prior to CS bond cleavage for the 2,3,4,5,6-pentafluorothiophenyl glycoside.


Assuntos
Glicosídeo Hidrolases/metabolismo , Tioglicosídeos/metabolismo , Aspergillus fumigatus/enzimologia , Biocatálise , Relação Dose-Resposta a Droga , Glicosídeo Hidrolases/química , Hidrólise , Estrutura Molecular , Relação Estrutura-Atividade , Tioglicosídeos/química
2.
Glycobiology ; 30(5): 325-333, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31804700

RESUMO

N-acetylneuraminic acid (5-acetamido-3,5-dideoxy-d-glycero-d-galacto-non-2-ulosonic acid), which is the principal sialic acid family member of the non-2-ulosonic acids and their various derivatives, is often found at the terminal position on the glycan chains that adorn all vertebrate cells. This terminal position combined with subtle variations in structure and linkage to the underlying glycan chains between humans and other mammals points to the importance of this diverse group of nine-carbon sugars as indicators of the unique aspects of human evolution and is relevant to understanding an array of human conditions. Enzymes that catalyze the removal N-acetylneuraminic acid from glycoconjugates are called neuraminidases. However, despite their documented role in numerous diseases, due to the promiscuous activity of many neuraminidases, our knowledge of the functions and metabolism of many sialic acids and the effect of the attachment to cellular glycans is limited. To this end, through a concerted effort of generation of random and site-directed mutagenesis libraries, subsequent screens and positive and negative evolutionary selection protocols, we succeeded in identifying three enzyme variants of the neuraminidase from the soil bacterium Micromonospora viridifaciens with markedly altered specificity for the hydrolysis of natural Kdn (3-deoxy-d-glycero-d-galacto-non-2-ulosonic acid) glycosidic linkages compared to those of N-acetylneuraminic acid. These variants catalyze the hydrolysis of Kdn-containing disaccharides with catalytic efficiencies (second-order rate constants: kcat/Km) of greater than 105 M-1 s-1; the best variant displayed an efficiency of >106 M-1 s-1 at its optimal pH.


Assuntos
Evolução Molecular Direcionada , Micromonospora/enzimologia , Neuraminidase/metabolismo , Biocatálise , Configuração de Carboidratos , Neuraminidase/genética , Açúcares Ácidos/metabolismo
3.
J Org Chem ; 85(5): 3336-3348, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31994882

RESUMO

Glycoside hydrolases (GHs) catalyze hydrolyses of glycoconjugates in which the enzyme choreographs a series of conformational changes during the catalytic cycle. As a result, some GH families, including α-amylases (GH13), have their chemical steps concealed kinetically. To address this issue for a GH13 enzyme, we prepared seven cyclohexenyl-based carbasugars of α-d-glucopyranoside that we show are good covalent inhibitors of a GH13 yeast α-glucosidase. The linear free energy relationships between rate constants and pKa of the leaving group are curved upward, which is indicative of a change in mechanism, with the better leaving groups reacting by an SN1 mechanism, while reaction rates for the worse leaving groups are limited by a conformational change of the Michaelis complex prior to a rapid SN2 reaction with the enzymatic nucleophile. Five bicyclo[4.1.0]heptyl-based carbaglucoses were tested with this enzyme, and our results are consistent with pseudoglycosidic bond cleavage that occurs via SN1 transition states that include nonproductive binding of the leaving group to the enzyme. In total, we show that the conformationally orthogonal reactions of these two carbasugars reveal mechanistic details hidden by conformational changes that the Michaelis complex of the enzyme and natural substrate undergoes which align the nucleophile for efficient catalysis.


Assuntos
Carbaçúcares , Glicosídeo Hidrolases , Catálise , Glicosídeo Hidrolases/metabolismo , Hidrólise , Cinética , alfa-Glucosidases
4.
Biochemistry ; 57(24): 3378-3386, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29630821

RESUMO

The glycoside hydrolase family 4 (GH4) α-galactosidase from Citrobacter freundii (MelA) catalyzes the hydrolysis of fluoro-substituted phenyl α-d-galactopyranosides by utilizing two cofactors, NAD+ and a metal cation, under reducing conditions. In order to refine the mechanistic understanding of this GH4 enzyme, leaving group effects were measured with various metal cations. The derived ßlg value on V/ K for strontium activation is indistinguishable from zero (0.05 ± 0.12). Deuterium kinetic isotope effects (KIEs) were measured for the activated substrates 2-fluorophenyl and 4-fluorophenyl α-d-galactopyranosides in the presence of Sr2+, Y3+, and Mn2+, where the isotopic substitution was on the carbohydrate at C-2 and/or C-3. To determine the contributing factors to the virtual transition state (TS) on which the KIEs report, kinetic isotope effects on isotope effects were measured on these KIEs using doubly deuterated substrates. The measured D V/ K KIEs for MelA-catalyzed hydrolysis of 2-fluorophenyl α-d-galactopyranoside are closer to unity than the measured effects on 4-fluorophenyl α-d-galactopyranoside, irrespective of the site of isotopic substitution and of the metal cation activator. These observations are consistent with hydride transfer at C-3 to the on-board NAD+, deprotonation at C-2, and a non-chemical step contributing to the virtual TS for V/ K.


Assuntos
Biocatálise , Citrobacter freundii/enzimologia , Galactose/metabolismo , Glicosídeo Hidrolases/metabolismo , Galactose/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Hidrólise , Cinética , Conformação Molecular , NAD/metabolismo
5.
J Am Chem Soc ; 139(31): 10625-10628, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28723089

RESUMO

The design of covalent inhibitors in glycoscience research is important for the development of chemical biology probes. Here we report the synthesis of a new carbocyclic mechanism-based covalent inhibitor of an α-glucosidase. The enzyme efficiently catalyzes its alkylation via either an allylic cation or a cationic transition state. We show this allylic covalent inhibitor has different catalytic proficiencies for pseudoglycosylation and deglycosylation. Such inhibitors have the potential to be useful chemical biology tools.


Assuntos
Inibidores de Glicosídeo Hidrolases/síntese química , Glicosídeo Hidrolases/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicosilação , Modelos Moleculares , Conformação Molecular
6.
Angew Chem Int Ed Engl ; 55(48): 14978-14982, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27783466

RESUMO

Glycoside hydrolases (GHs) have attracted considerable attention as targets for therapeutic agents, and thus mechanism-based inhibitors are of great interest. We report the first structural analysis of a carbocyclic mechanism-based GH inactivator, the results of which show that the two Michaelis complexes are in 2 H3 conformations. We also report the synthesis and reactivity of a fluorinated analogue and the structure of its covalently linked intermediate (flattened 2 H3 half-chair). We conclude that these inactivator reactions mainly involve motion of the pseudo-anomeric carbon atom, knowledge that should stimulate the design of new transition-state analogues for use as chemical biology tools.

7.
ACS Cent Sci ; 6(5): 760-770, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32490192

RESUMO

Retaining glycoside hydrolases cleave their substrates through stereochemical retention at the anomeric position. Typically, this involves two-step mechanisms using either an enzymatic nucleophile via a covalent glycosyl enzyme intermediate or neighboring-group participation by a substrate-borne 2-acetamido neighboring group via an oxazoline intermediate; no enzymatic mechanism with participation of the sugar 2-hydroxyl has been reported. Here, we detail structural, computational, and kinetic evidence for neighboring-group participation by a mannose 2-hydroxyl in glycoside hydrolase family 99 endo-α-1,2-mannanases. We present a series of crystallographic snapshots of key species along the reaction coordinate: a Michaelis complex with a tetrasaccharide substrate; complexes with intermediate mimics, a sugar-shaped cyclitol ß-1,2-aziridine and ß-1,2-epoxide; and a product complex. The 1,2-epoxide intermediate mimic displayed hydrolytic and transfer reactivity analogous to that expected for the 1,2-anhydro sugar intermediate supporting its catalytic equivalence. Quantum mechanics/molecular mechanics modeling of the reaction coordinate predicted a reaction pathway through a 1,2-anhydro sugar via a transition state in an unusual flattened, envelope (E 3) conformation. Kinetic isotope effects (k cat/K M) for anomeric-2H and anomeric-13C support an oxocarbenium ion-like transition state, and that for C2-18O (1.052 ± 0.006) directly implicates nucleophilic participation by the C2-hydroxyl. Collectively, these data substantiate this unprecedented and long-imagined enzymatic mechanism.

8.
Nat Commun ; 9(1): 3243, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104598

RESUMO

Mechanism-based glycoside hydrolase inhibitors are carbohydrate analogs that mimic the natural substrate's structure. Their covalent bond formation with the glycoside hydrolase makes these compounds excellent tools for chemical biology and potential drug candidates. Here we report the synthesis of cyclohexene-based α-galactopyranoside mimics and the kinetic and structural characterization of their inhibitory activity toward an α-galactosidase from Thermotoga maritima (TmGalA). By solving the structures of several enzyme-bound species during mechanism-based covalent inhibition of TmGalA, we show that the Michaelis complexes for intact inhibitor and product have half-chair (2H3) conformations for the cyclohexene fragment, while the covalently linked intermediate adopts a flattened half-chair (2H3) conformation. Hybrid QM/MM calculations confirm the structural and electronic properties of the enzyme-bound species and provide insight into key interactions in the enzyme-active site. These insights should stimulate the design of mechanism-based glycoside hydrolase inhibitors with tailored chemical properties.


Assuntos
Carbaçúcares/farmacologia , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Biocatálise , Carbaçúcares/síntese química , Carbaçúcares/química , Domínio Catalítico , Cicloexenos/síntese química , Cicloexenos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Galactose/análogos & derivados , Glicosídeo Hidrolases/química , Cinética , Simulação de Dinâmica Molecular , Teoria Quântica , Thermotoga maritima/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA