Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30686582

RESUMO

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Assuntos
Circulação Colateral/fisiologia , Coração/crescimento & desenvolvimento , Regeneração/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Quimiocina CXCL12/metabolismo , Vasos Coronários/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Receptores CXCR4/metabolismo , Transdução de Sinais
2.
Nat Methods ; 19(5): 613-619, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545715

RESUMO

Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.


Assuntos
Microscopia , Animais , Camundongos , Microscopia/métodos
3.
Eur Respir J ; 61(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024132

RESUMO

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Assuntos
Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Arterial Pulmonar/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipóxia/metabolismo
4.
Circulation ; 139(14): 1710-1724, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30586764

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a life-threatening disorder of the pulmonary circulation associated with loss and impaired regeneration of microvessels. Reduced pericyte coverage of pulmonary microvessels is a pathological feature of PAH and is caused partly by the inability of pericytes to respond to signaling cues from neighboring pulmonary microvascular endothelial cells (PMVECs). We have shown that activation of the Wnt/planar cell polarity pathway is required for pericyte recruitment, but whether production and release of specific Wnt ligands by PMVECs are responsible for Wnt/planar cell polarity activation in pericytes is unknown. METHODS: Isolation of pericytes and PMVECs from healthy donor and PAH lungs was carried out with 3G5 or CD31 antibody-conjugated magnetic beads. Wnt expression profile of PMVECs was documented via quantitative polymerase chain reaction with a Wnt primer library. Exosome purification from PMVEC media was carried out with the ExoTIC device. Hemodynamic profile, right ventricular function, and pulmonary vascular morphometry were obtained in a conditional endothelium-specific Wnt5a knockout ( Wnt5aECKO) mouse model under normoxia, chronic hypoxia, and hypoxia recovery. RESULTS: Quantification of Wnt ligand expression in healthy PMVECs cocultured with pericytes demonstrated a 35-fold increase in Wnt5a, a known Wnt/planar cell polarity ligand. This Wnt5a spike was not seen in PAH PMVECs, which correlated with an inability to recruit pericytes in Matrigel coculture assays. Exosomes purified from media demonstrated an increase in Wnt5a content when healthy PMVECs were cocultured with pericytes, a finding that was not observed in exosomes of PAH PMVECs. Furthermore, the addition of either recombinant Wnt5a or purified healthy PMVEC exosomes increased pericyte recruitment to PAH PMVECs in coculture studies. Although no differences were noted in normoxia and chronic hypoxia, Wnt5aECKO mice demonstrated persistent pulmonary hypertension and right ventricular failure 4 weeks after recovery from chronic hypoxia, which correlated with significant reduction, muscularization, and decreased pericyte coverage of microvessels. CONCLUSIONS: We identify Wnt5a as a key mediator for the establishment of pulmonary endothelium-pericyte interactions, and its loss could contribute to PAH by reducing the viability of newly formed vessels. We speculate that therapies that mimic or restore Wnt5a production could help prevent loss of small vessels in PAH.


Assuntos
Movimento Celular , Células Endoteliais/metabolismo , Pericitos/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Proteína Wnt-5a/deficiência , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Hipóxia Celular , Polaridade Celular , Células Cultivadas , Criança , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Exossomos/metabolismo , Exossomos/patologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica , Comunicação Parácrina , Pericitos/patologia , Hipertensão Arterial Pulmonar/genética , Hipertensão Arterial Pulmonar/patologia , Artéria Pulmonar/patologia , Ratos , Via de Sinalização Wnt , Proteína Wnt-5a/genética
5.
Exp Eye Res ; 193: 107957, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032627

RESUMO

Vision loss is a devastating consequence of systemic hypoxia, but the cellular mechanisms are unclear. We investigated the impact of acute hypoxia in the retina and optic nerve. We induced systemic hypoxia (10% O2) in 6-8w mice for 48 h and performed in vivo imaging using optical coherence tomography (OCT) at baseline and after 48 h to analyze structural changes in the retina and optic nerve. We analyzed glial cellular and molecular changes by histology and immunofluorescence and the impact of pretreatment with 4-phenylbutyric acid (4-PBA) in oligodendroglia survival. After 48 h hypoxia, we found no change in ganglion cell complex thickness and no loss of retinal ganglion cells. Despite this, there was significantly increased expression of CCAAT-enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum stress, in the retina and optic nerve. In addition, hypoxia induced obvious increase of GFAP expression in the anterior optic nerve, where it co-localized with CHOP, and significant loss of Olig2+ oligodendrocytes. Pretreatment with 4-PBA, which has been shown to reduce endoplasmic reticulum stress, rescued total Olig2+ oligodendrocytes and increased the pool of mature (CC-1+) but not of immature (PDGFRa+) oligodendrocytes. Consistent with a selective vulnerability of the retina and optic nerve in hypoxia, the most striking changes in the 48 h murine model of hypoxia were in glial cells in the optic nerve, including increased CHOP expression in the astrocytes and loss of oligodendrocytes. Our data support a model where glial dysfunction is among the earliest events in systemic hypoxia - suggesting that glia may be a novel target in treatment of hypoxia.


Assuntos
Hipóxia/complicações , Neuroglia/patologia , Doenças do Nervo Óptico/diagnóstico , Nervo Óptico/patologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Hipóxia/diagnóstico , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Nervo Óptico/etiologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos
6.
Am J Physiol Lung Cell Mol Physiol ; 314(6): L967-L983, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29417823

RESUMO

Drug-induced pulmonary arterial hypertension (D-PAH) is a form of World Health Organization Group 1 pulmonary hypertension (PH) defined by severe small vessel loss and obstructive vasculopathy, which leads to progressive right heart failure and death. To date, 16 different compounds have been associated with D-PAH, including anorexigens, recreational stimulants, and more recently, several Food and Drug Administration-approved medications. Although the clinical manifestation, pathology, and hemodynamic profile of D-PAH are indistinguishable from other forms of pulmonary arterial hypertension, its clinical course can be unpredictable and to some degree dependent on removal of the offending agent. Because only a subset of individuals develop D-PAH, it is probable that genetic susceptibilities play a role in the pathogenesis, but the characterization of the genetic factors responsible for these susceptibilities remains rudimentary. Besides aggressive treatment with PH-specific therapies, the major challenge in the management of D-PAH remains the early identification of compounds capable of injuring the pulmonary circulation in susceptible individuals. The implementation of pharmacovigilance, precision medicine strategies, and global warning systems will help facilitate the identification of high-risk drugs and incentivize regulatory strategies to prevent further outbreaks of D-PAH. The goal for this review is to inform clinicians and scientists of the prevalence of D-PAH and to highlight the growing number of common drugs that have been associated with the disease.


Assuntos
Antagonistas dos Receptores de Endotelina/efeitos adversos , Hipertensão Pulmonar , Inibidores da Fosfodiesterase 5/efeitos adversos , Circulação Pulmonar/efeitos dos fármacos , Animais , Antagonistas dos Receptores de Endotelina/uso terapêutico , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Inibidores da Fosfodiesterase 5/uso terapêutico
7.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L252-L266, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473326

RESUMO

Pulmonary arterial hypertension is a complication of methamphetamine use (METH-PAH), but the pathogenic mechanisms are unknown. Given that cytochrome P450 2D6 (CYP2D6) and carboxylesterase 1 (CES1) are involved in metabolism of METH and other amphetamine-like compounds, we postulated that loss of function variants could contribute to METH-PAH. Although no difference in CYP2D6 expression was seen by lung immunofluorescence, CES1 expression was significantly reduced in endothelium of METH-PAH microvessels. Mass spectrometry analysis showed that healthy pulmonary microvascular endothelial cells (PMVECs) have the capacity to both internalize and metabolize METH. Furthermore, whole exome sequencing data from 18 METH-PAH patients revealed that 94.4% of METH-PAH patients were heterozygous carriers of a single nucleotide variant (SNV; rs115629050) predicted to reduce CES1 activity. PMVECs transfected with this CES1 variant demonstrated significantly higher rates of METH-induced apoptosis. METH exposure results in increased formation of reactive oxygen species (ROS) and a compensatory autophagy response. Compared with healthy cells, CES1-deficient PMVECs lack a robust autophagy response despite higher ROS, which correlates with increased apoptosis. We propose that reduced CES1 expression/activity could promote development of METH-PAH by increasing PMVEC apoptosis and small vessel loss.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Metanfetamina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Pulmão/efeitos dos fármacos , Masculino , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Am J Pathol ; 186(9): 2500-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27456128

RESUMO

Reduced endothelial-pericyte interactions are linked to progressive small vessel loss in pulmonary arterial hypertension (PAH), but the molecular mechanisms underlying this disease remain poorly understood. To identify relevant gene candidates associated with aberrant pericyte behavior, we performed a transcriptome analysis of patient-derived donor control and PAH lung pericytes followed by functional genomics analysis. Compared with donor control cells, PAH pericytes had significant enrichment of genes involved in various metabolic processes, the top hit being PDK4, a gene coding for an enzyme that suppresses mitochondrial activity in favor of glycolysis. Given reports that link reduced mitochondrial activity with increased PAH cell proliferation, we hypothesized that increased PDK4 is associated with PAH pericyte hyperproliferation and reduced endothelial-pericyte interactions. We found that PDK4 gene and protein expression was significantly elevated in PAH pericytes and correlated with reduced mitochondrial metabolism, higher rates of glycolysis, and hyperproliferation. Importantly, reducing PDK4 levels restored mitochondrial metabolism, reduced cell proliferation, and improved endothelial-pericyte interactions. To our knowledge, this is the first study that documents significant differences in gene expression between human donor control and PAH lung pericytes and the link between mitochondrial dysfunction and aberrant endothelial-pericyte interactions in PAH. Comprehensive characterization of these candidate genes could provide novel therapeutic targets to improve endothelial-pericyte interactions and prevent small vessel loss in PAH.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/patologia , Pericitos/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Western Blotting , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transcriptoma
10.
Appl Environ Microbiol ; 80(23): 7405-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25239909

RESUMO

Bdellovibrio bacteriovorus is a Gram-negative predator of other Gram-negative bacteria. Interestingly, Bdellovibrio bacteriovorus 109J cells grown in coculture with Escherichia coli ML-35 prey develop into a spatially organized two-dimensional film when located on a nutrient-rich surface. From deposition of 10 µl of a routine cleared coculture of B. bacteriovorus and E. coli cells, the cells multiply into a macroscopic community and segregate into an inner, yellow circular region and an outer, off-white region. Fluorescence in situ hybridization and atomic force microscopy measurements confirm that the mature film is spatially organized into two morphologically distinct Bdellovibrio populations, with primarily small, vibroid cells in the center and a complex mixture of pleomorphic cells in the outer radii. The interior region cell population exhibits the hunting phenotype while the outer region cell subpopulation does not. Crowding and high nutrient availability with limited prey appear to favor diversification of the B. bacteriovorus population into two distinct, thriving subpopulations and may be beneficial to the persistence of B. bacteriovorus in biofilms.


Assuntos
Bdellovibrio/citologia , Bdellovibrio/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Interações Microbianas , Meios de Cultura/química , Hibridização in Situ Fluorescente , Microscopia de Força Atômica
11.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442268

RESUMO

T helper 2 (Th2) responses protect against pathogens while also driving allergic inflammation, yet how large-scale Th2 responses are generated in tissue context remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, we observed extensive activation and "macro-clustering" of early Th2 cells with migratory type-2 dendritic cells (cDC2s), generating specialized Th2-promoting microenvironments. Macro-clustering was integrin-mediated and promoted localized cytokine exchange among T cells to reinforce differentiation, which contrasted the behavior during Th1 responses. Unexpectedly, formation of Th2 macro-clusters was dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting prolonged T cell activation, macro-clustering, and cytokine sensing. Thus, the generation of dedicated Th2 priming microenvironments through enhanced costimulatory molecule signaling initiates Th2 responses in vivo and occurs in a skin site-specific manner.


Assuntos
Citocinas , Inflamação , Humanos , Diferenciação Celular , Integrinas , Linfonodos , Fatores de Transcrição
12.
bioRxiv ; 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37461439

RESUMO

Formation of T helper 2 (Th2) responses has been attributed to low-grade T cell stimulation, yet how large-scale polyclonal Th2 responses are generated in vivo remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, Th2 differentiation was associated with enhanced T cell activation and extensive integrin-dependent 'macro-clustering' at the T-B border, which also contrasted clustering behavior seen during Th1 differentiation. Unexpectedly, formation of Th2 macro-clusters within LNs was highly dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting T cell macro-clustering and cytokine sensing. Thus, generation of dedicated priming micro-environments through enhanced costimulatory molecule signaling initiates the generation of Th2 responses in vivo and occurs in a skin site-specific manner.

13.
Elife ; 82019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31603425

RESUMO

IL-10-producing Tr1 cells promote tolerance but their contributions to tolerogenic memory are unclear. Using 10BiT mice that carry a Foxp3-eGFP reporter and stably express CD90.1 following IL-10 production, we characterized the spatiotemporal dynamics of Tr1 cells in a house dust mite model of allergic airway inflammation. CD90.1+Foxp3-IL-10+ Tr1 cells arise from memory cells and rejoin the tissue-resident memory T-cell pool after cessation of IL-10 production. Persistent antigenic stimulation is necessary to sustain IL-10 production and Irf1 and Batf expression distinguishes CD90.1+Foxp3-IL-10+ Tr1 cells from CD90.1+Foxp3-IL-10- 'former' Tr1. Depletion of Tr1-like cells after primary sensitization exacerbates allergic airway inflammation. However, neither transfer nor depletion of former Tr1 cells influences either Tr1 numbers or the inflammatory response during subsequent allergen memory re-challenge weeks later. Together these data suggest that naturally-arising Tr1 cells do not necessarily give rise to more Tr1 upon allergen re-challenge or contribute to tolerogenic memory. This phenotypic instability may limit efforts to re-establish tolerance by expanding Tr1 in vivo.


Assuntos
Asma/patologia , Tolerância Imunológica , Memória Imunológica , Linfócitos T Reguladores/imunologia , Alérgenos/imunologia , Animais , Modelos Animais de Doenças , Camundongos , Pyroglyphidae/imunologia
14.
Biomaterials ; 203: 52-62, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30852423

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening progressive lung disorder with limited therapeutic options. While interleukin-10 (IL-10) is a potent anti-inflammatory and anti-fibrotic cytokine, its utility in treating lung fibrosis has been limited by its short half-life. We describe an innovative hydrogel-based approach to deliver recombinant IL-10 to the lung for the prevention and reversal of pulmonary fibrosis in a mouse model of bleomycin-induced lung injury. Our studies show that a hyaluronan and heparin-based hydrogel system locally delivers IL-10 by capitalizing on the ability of heparin to reversibly bind IL-10 without bleeding or other complications. This formulation is significantly more effective than soluble IL-10 for both preventing and reducing collagen deposition in the lung parenchyma after 7 days of intratracheal administration. The anti-fibrotic effect of IL-10 in this system is dependent on suppression of TGF-ß driven collagen production by lung fibroblasts and myofibroblasts. We conclude that hydrogel-based delivery of IL-10 to the lung is a promising therapy for fibrotic lung disorders.


Assuntos
Bleomicina/toxicidade , Hidrogéis/química , Interleucina-10/administração & dosagem , Interleucina-10/uso terapêutico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Humanos , Ácido Hialurônico/química , Imuno-Histoquímica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA